
Model-Based Calibration
Toolbox

For Use with MATLAB® and Simulink®

Computation

Visualization

Programming

Simulation

CAGE User’s Guide
Version 3

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Model-Based Calibration Toolbox CAGE User’s Guide
© COPYRIGHT 2001–2005 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox
are registered trademarks of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
December 2001 Online only New for Version 1.0 (Release 12.1)
August 2002 Online only Revised for Version 1.1 (Release 13)
May 2003 Online only Revised for Version 2.0 (Release 13+)
June 2004 Online only Revised for Version 2.1 (Release 14)
June 2004 Online only Revised for Version 2.1.1 (Release 14+)
November 2005 Online only Revised for Version 3.0 (Release 14SP3+)

Contents

Getting Started

1
What Is CAGE? . 1-2

Starting the CAGE Browser . 1-3

Navigating CAGE . 1-4
CAGE Views and Processes . 1-6

How to Use This Manual . 1-9

Variables and Models

2
Setting Up Variable Items . 2-3

Importing and Exporting a Variable Dictionary 2-5
Adding and Editing Variable Items 2-6
Using Aliases . 2-9

Setting Up Models . 2-11
Importing Models . 2-13
Adding New Function Models . 2-15
Renaming and Editing Models . 2-17

Model Properties . 2-20
Model Properties: General . 2-20
Model Properties: Inputs . 2-21
Model Properties: Model . 2-22
Model Properties: Information . 2-23

CAGE Import Tool . 2-24

Specifying Locations of Files . 2-27

v

Tables

3
Setting Up Tables . 3-3

Adding, Duplicating and Deleting Tables 3-4
Adding Tables . 3-4
Duplicating Tables . 3-5
Deleting Tables . 3-5

Table View . 3-6
Viewing and Editing a Table . 3-8
Using the Graph of the Table . 3-10
Filling a Table by Extrapolation . 3-11
Table Menu . 3-12

Using the History Display . 3-16
Resetting to Previous Versions . 3-17
Comparing Versions . 3-18

Calibration Manager . 3-20
Setting Up Tables Manually . 3-20
Setting Up Tables Using an Existing Calibration File 3-21
Copying Table Data from Other Sources 3-23

Table Properties . 3-24
Floating-Point Precision . 3-25
Polynomial Ratio, Fixed Point . 3-26
Lookup Table, Fixed Point . 3-28

About Normalizers . 3-30

Normalizer View . 3-32
Editing Breakpoints . 3-33
Input/Output Display . 3-35
Normalizer Display . 3-35
Breakpoint Spacing Display . 3-36

Inverting a Table . 3-39
Inverting One-Dimensional Tables 3-41

vi Contents

Inverting Two-Dimensional Tables 3-43

Importing and Exporting Calibrations 3-46
Importing Calibrations . 3-46
Exporting Calibrations . 3-47

Feature Calibrations

4
Performing Feature Calibrations 4-2

Setting Up a Feature Calibration 4-5
Adding a Feature . 4-5
Assigning a Model . 4-6
Setting Up Your Strategy . 4-6

Calibrating the Normalizers . 4-12
Initializing Breakpoints . 4-13
Filling Breakpoints . 4-13
Optimizing Breakpoints . 4-17
Viewing the Normalizer Comparison Pane 4-21

Calibrating the Tables . 4-24
Initializing Table Values . 4-25
Filling Table Values . 4-26
Comparing the Strategy and the Model 4-28
Filling the Table by Extrapolation . 4-30

Calibrating the Feature Node . 4-32
Initializing the Feature . 4-32
Feature Fill Wizard . 4-34

Feature View . 4-40
Feature Menu . 4-41

vii

Tradeoff Calibrations

5
Performing a Tradeoff Calibration 5-2

Setting Up a Tradeoff Calibration 5-5
Adding a Tradeoff . 5-5
Adding Tables to a Tradeoff . 5-6
Displaying Models in Tradeoff . 5-8

Calibrating Tables in a Tradeoff Calibration 5-10
Setting Values of Other Variables . 5-13
Determining a Value at a Specific Operating Point 5-15
Tradeoff Table Menus . 5-16

Using Regions . 5-21
Defining a Region . 5-22
Clearing a Region . 5-22

Multimodel Tradeoffs . 5-23
Adding a Multimodel Tradeoff . 5-24
Calibrating Using a Multimodel Tradeoff 5-27

Automated Tradeoff . 5-30

Optimization

6
Using the Optimization View . 6-2

Setting Up Optimizations . 6-4
Optimization Wizard . 6-4
Objectives and Constraints . 6-11
Objective Editor . 6-12
Constraint Editor . 6-15
Defining Variable Values . 6-17
Using Variable Values Length Controls 6-19

viii Contents

Running Optimizations . 6-22
Optimization View Toolbar . 6-23
Optimization Parameters Dialog . 6-24

Optimization Output View . 6-30
Solution Slice . 6-31
Pareto Slice . 6-33
Weighted Objective Pareto Slice . 6-34
Selected Solution Slice . 6-36
Objective Slice Graphs . 6-38
Pareto Front Graphs . 6-39
Constraint Slice Graphs . 6-40
Constraint Summary Table . 6-40
Filling Tables From Optimization Results 6-40
Custom Fill Function Structure . 6-43

Automated Tradeoff . 6-46
Using Automated Tradeoff . 6-46
What Are Appropriate Optimizations? 6-48

User-Defined Optimization . 6-50
Implementing Your Optimization Algorithm in CAGE 6-50
About the Worked Example Optimization Algorithm 6-53
Checking User-Defined Optimizations into CAGE 6-55

Optimization Function Reference 6-57
Methods of cgoptimoptions . 6-57
Methods of cgoptimstore . 6-59

Functions — Alphabetical List . 6-63

Data Sets

7
Data Sets Views . 7-2

Setting Up Data Sets . 7-4
Importing Experimental Data . 7-4

ix

Importing Data from a Table in Your Session 7-6
Specifying the Factors Manually . 7-7
Creating a Factor from the Error Between Factors 7-10

Viewing Data in a Table . 7-11

Plotting Outputs . 7-13
Plotting Multiple Selections . 7-14

Using Color to Display Information 7-16
Restricting the Color . 7-18

Linking Factors in a Data Set . 7-20

Assigning Columns of Data . 7-22

Manipulating Models in Data Set View 7-23

Filling Tables from Experimental Data 7-24
Creating Rules . 7-27

Surface Viewer

8
The Surface Viewer in CAGE . 8-2

Viewing a Model or Strategy . 8-3

Setting Variable Ranges . 8-5

Displaying the Model or Feature . 8-7
Surface . 8-8
Contour . 8-10
Line . 8-11
Single Value . 8-11
Multiline . 8-12

x Contents

Table . 8-12

Making Movies . 8-14

Displaying Errors . 8-16
Feature Error Data . 8-16
Prediction Error Data . 8-16

Printing and Exporting the Display 8-18

Index

xi

xii Contents

1

Getting Started

This section includes the following topics:

What Is CAGE? (p. 1-2) Introducing the CAGE browser
part of the Model-Based Calibration
Toolbox. You can use CAGE to
calibrate lookup tables using
models and data. You can trade off
competing objectives, and validate
calibrations against data.

Navigating CAGE (p. 1-4) How to find your way around CAGE
and navigate between processes,
tables, data, variables, and models.

How to Use This Manual (p. 1-9) How to find information in this
User’s Guide, with links to reference
chapters for all CAGE functionality.

1 Getting Started

What Is CAGE?
CAGE (CAlibration GEneration) is an easy-to-use graphical interface for
calibrating lookup tables for your electronic control unit (ECU).

As engines get more complicated, and models of engine behavior more
intricate, it is increasingly difficult to rely on intuition alone to calibrate
lookup tables. CAGE provides analytical methods for calibrating lookup
tables.

CAGE uses models of the engine control subsystems to calibrate lookup tables.
With CAGE you fill and optimize lookup tables in existing ECU software
using models from the Model Browser part of the Model-Based Calibration
Toolbox. From these models, CAGE builds steady-state ECU calibrations.

CAGE also compares lookup tables directly to experimental data for
validation.

Feature Calibration

A feature calibration compares a model of an estimated signal with a lookup
table (or algebraic collection of tables) that estimates the same signal in the
ECU. CAGE finds the optimum calibration for the lookup table(s).

For example, a typical engine subsystem controls the spark angle to produce
the peak torque; that is, the Maximum Brake Torque (MBT) spark. Using the
Model Browser, you can build a statistically sound model of MBT spark, over
a range of engine speeds and relative air charges, or loads. Use the feature
calibration to fill a lookup table by comparing the table to the model.

Tradeoff Calibration

A tradeoff calibration fills lookup tables by comparing models of different
engine characteristics at key operating points.

For example, there are several models of important engine characteristics,
such as torque and nitrous oxides (NOX) emissions. Both models depend on
the spark angle. At a particular operating point, a slight reduction of torque
can result in a dramatic reduction of NOX emissions. Thus, the calibrator

1-2

What Is CAGE?

uses the value of the spark angle that gives this reduction in NOX emissions
instead of the spark angle that generates maximum torque.

Optimization

CAGE can optimize calibrations with reference to models, including
single- and multi-objective optimizations, sum optimizations, user-defined
optimizations, and automated tradeoff.

Comparing Calibrations to Data

You can compare your calibrations to experimental data for validation.

For example, after completing a calibration, you can import experimental
data from a spreadsheet. You can use CAGE to compare your calibration
to the data.

Starting the CAGE Browser
To start the application, type

cage

at the MATLAB® command prompt.

1-3

1 Getting Started

Navigating CAGE
The view of CAGE depends on two things:

• Which button you select in the Processes and Data Objects panes

• The item you highlight in the tree display

When you open CAGE, it looks like this.

1-4

Navigating CAGE

CAGE includes a Processes pane and a Data Objects pane to help you
identify the type of calibration you want to do and the data objects that

1-5

1 Getting Started

you intend to use. Use the buttons in these panes to navigate between the
different sections of functionality in CAGE.

CAGE Views and Processes
The Processes pane has three buttons:

• Feature shows the Feature view, with the tables and strategies that are
associated with that feature. See “Feature View” on page 4-40.

A feature is a strategy (or collection of tables) and a model used to calibrate
those tables. In the Feature view, you can fill tables by comparing a
strategy to a model. See Chapter 4, “Feature Calibrations”. You can import
existing strategies or construct new ones using Simulink® from the feature
view.

From the feature node in the tree display, you can access the Surface Viewer
to examine the strategy or model or both. See Chapter 8, “Surface Viewer”.

• Tradeoff shows the Tradeoff view, with a list of the tables and models
to display. Here you can see graphically the effects of manually altering
variables to trade off different objectives (such as maximizing torque while
minimizing emissions). At the tradeoff node, you can calibrate table values
to achieve the best compromise between competing objectives. You can
calibrate using single or multimodel tradeoffs. See Chapter 5, “Tradeoff
Calibrations”. You can also use the optimization functionality of CAGE to
run automated tradeoffs, described in the Optimization section (see below).

• Optimization shows the Optimization view. From here you can set up and
run optimizations, including automated tradeoffs. There are standard
routines available and also templates provided so you can write your
own optimization routines. You can find full instructions in Chapter 6,
“Optimization”.

You can reach the Calibration Manager from the Feature and Tradeoff
process views, and from the Tables view, but not Optimization. In
the Calibration Manager you can set up the size and contents of tables
(manually or using existing calibration files) and edit the precision used for
values (to match the kind of electronic control unit you are going to use).
See “Calibration Manager” on page 3-20.

1-6

Navigating CAGE

The Data Objects pane has four buttons:

• Variable Dictionary stores all the variables, constants, and formulas in
your session. Here you can view, add, and edit any variables in any part of
your session. See “Setting Up Variable Items” on page 2-3.

• Tables enables you to see all the tables and normalizers in your session.
You can also calibrate tables manually here if you want. You can add and
delete tables from the project. From any table display (here, or in other
views) you can access the History Display to manage changes in your tables
and normalizers. You can use the History Display to reverse changes. See
“Setting Up Tables” on page 3-3.

• Models stores all the models in your session. Here you can view a graphical
display of these models, including a diagram of the model’s input structure.
This is useful because a model can have other models as inputs. You can
change the inputs here. For example, you can change your model’s input
Spark to be connected to a model for Spark rather than to the variable
Spark. You can also access the surface viewer here to examine models. See
“Setting Up Models” on page 2-11 and Chapter 8, “Surface Viewer”.

• Data Sets enables you to evaluate your models and features over a custom
set of input values. Here you can create and edit a set of input values
and view several models or features evaluated at these points. You can
compare your tables and models with experimental data to validate your
calibrations. You can also fill tables directly from experimental data by

1-7

1 Getting Started

loading the experimental data as a new data set. See Chapter 7, “Data
Sets”.

1-8

How to Use This Manual

How to Use This Manual
This manual is the CAGE User’s Guide. See also the Model Browser User’s
Guide for information on the other main interface of the Model-Based
Calibration Toolbox.

Learning CAGE

See the Getting Started guide for tutorials and case studies.

Using CAGE

• Chapter 2, “Variables and Models” describes how to set up CAGE sessions
before performing calibrations and gives an overview of where in CAGE to
find all the functionality for different processes.

• Chapter 3, “Tables” describes how to create and use tables and normalizers,
including using the Calibration Manager and History Viewer.

• Chapter 4, “Feature Calibrations” describes how to calibrate lookup tables
by reference to models built using the model browser.

• Chapter 5, “Tradeoff Calibrations” describes how to calibrate lookup tables
by adjusting many values to fulfill different objectives.

• Chapter 6, “Optimization” describes how to use the optimization functions,
including automated tradeoffs, and describes all the functions available for
user-defined optimizations.

• Chapter 7, “Data Sets” describes how to use CAGE to compare calibrations
to experimental data, and how to use experimental data to fill lookup tables.

• Chapter 8, “Surface Viewer” describes how to use the Surface Viewer.

1-9

1 Getting Started

1-10

2

Variables and Models

The following sections describe how to set up variables and models before
performing calibrations.

Setting Up Variable Items (p. 2-3) Before you can perform a calibration
using CAGE, you need to set up the
variables and constants you want
to use. This section describes how
to use the Variable Dictionary view
to create, import, edit, and export
variables and constants.

Setting Up Models (p. 2-11) Before you can perform a calibration
using CAGE, you need to set up the
models you want to use. This section
describes how to use the Model
view to import and rename models,
edit model inputs, and create new
function models.

Model Properties (p. 2-20) Use the Model Properties dialog
to switch model output between
model values and boundary or
PEV values, and view information
such as the model type, definition,
inputs, creation date, user name,
and toolbox version.

2 Variables and Models

CAGE Import Tool (p. 2-24) This section describes how to use the
CAGE Import Tool to get models and
other items from any Model-Based
Calibration Toolbox project file
produced in CAGE or the Model
Browser. You can use this to replace
existing items in your CAGE project.

Specifying Locations of Files (p. 2-27) How to use file preferences in CAGE.

2-2

Setting Up Variable Items

Setting Up Variable Items
The Variable Dictionary is a store for all the variables, constants, and
formulae in your session.

To view or edit the items in the Variable Dictionary, click the button, shown,
in the Data Objects pane.

Selecting the Variable Dictionary view displays the variables, constants,
and formulae in the current project.

This section describes the following:

• “Importing and Exporting a Variable Dictionary” on page 2-5

• “Adding and Editing Variable Items” on page 2-6

• “Using the Variable Menu” on page 2-8

• “Using Aliases” on page 2-9

Note that if you have existing CAGE projects you can use the “CAGE Import
Tool” on page 2-24 to import variable items and other CAGE items directly
from other projects.

2-3

2 Variables and Models

Following is an example of the Variable Dictionary view.

The upper pane shows a list of all the current variables, constants, and
formulas. The lower pane displays edit boxes so you can specify the settings of
the selected variable, constant, or formula.

2-4

Setting Up Variable Items

Different Variable Dictionary Items

• Variables — standard items that feed into models, strategies and tables,
and define ranges for these items

• Constant — used for inputs that you do not want to change

• Formulae — used when you want a variable item to depend on another

Importing and Exporting a Variable Dictionary
A variable dictionary contains all the variable items for your calibrations. You
can set up your variable dictionary once, and use it in many calibrations.

If you import a model, it has variables associated with it, in which case you
might not have to import a variable dictionary.

Importing a Variable Dictionary
To import a dictionary of variables from an .xml file,

1 Select File > Import > Variable Dictionary.

2 Select the correct dictionary file.

Note you can also import variable items directly from other CAGE projects
using the “CAGE Import Tool” on page 2-24.

Exporting a Variable Dictionary
After setting up a variable dictionary, you can save the dictionary for use in
many different calibrations.

To export a dictionary of variables to an .xml file,

1 Select File > Export > Variable Dictionary.

2 Select a suitable name for the dictionary file.

See Also

• “Setting Up Variable Items” on page 2-3

2-5

2 Variables and Models

• “Adding and Editing Variable Items” on page 2-6

Adding and Editing Variable Items
To add variable items you can use the Variable Dictionary toolbar, shown, or
you can select items from the File -> New -> Variable Items menu.

Adding a Variable
To add a variable,

1 Select File > New > Variable Item > Variable.

A new variable is added to the variable dictionary.

2 Select Edit > Rename to alter the name of the variable.

3 Specify the Minimum and Maximum values of the variable in the edit
boxes in the lower pane.

4 Specify the value of the Set Point in the edit box.

Using Set Points in the Variable Dictionary. The set point of a variable is
a point that is of particular interest in the range of the variable. You can edit
set points in the variable dictionary or the models view.

For example, for the air/fuel ratio variable, AFR, the range of values is
typically 11 to 17. However, whenever only one value of AFR is required, it is
preferable to choose 14.3, the stoichiometric constant, over any other value.
So enter 14.3 as the Set Point.

CAGE uses the set point as the default value of the variable wherever one
value from the variable range is required. For instance, CAGE uses the set
point when evaluating a model over the range of a different variable.

2-6

Setting Up Variable Items

For example, a simple model for torque depends on AFR, engine speed, and
relative air charge. CAGE uses the set point of AFR when it calculates the
values of the model over the ranges of the engine speed and relative air charge.

Adding a Constant
To add a constant,

1 Select File > New > Variable Item > Constant.

A new constant is added to the variable dictionary.

2 Select Edit > Rename to alter the name of the constant.

3 Specify the value of the constant in the Set Point edit box, in the lower
pane.

Adding Formulas
You might want to add a formula to your session. For example, the formula

where afr is the air/fuel ratio and stoich is the stoichiometric constant.

To add a formula,

1 Select File > New > Variable Item > Formula.

The Add Formula dialog box appears.

2 In the dialog, enter the right side of the formula, as in this example
afr/stoich. Note it is normal to create inputs to a formula first. If you
do not use pre-existing variable names then those inputs are created, so
be careful to get input names exactly correct. Follow these requirements
for a valid formula string:

• A formula can only have exactly one variable input

• No formulae as inputs

• Not circular (i.e. self referencing)

• Must not error when evaluated

• Must produce a vector for a vector input

2-7

2 Variables and Models

• Must be invertible

Click OK and a new formula is added to the variable dictionary.

3 Select Edit -> Rename to alter the name of the formula.

See Also

• “Setting Up Variable Items” on page 2-3

• “Adding and Editing Variable Items” on page 2-6

Using the Variable Menu
The Variable menu in the variable dictionary enables you to alter variable
items. These choices are also available in the right-click context menu on
the list view.

Change item to:

• Alias

Changes the selected item to be an alias of another item in the current
project. For example, if you have two variables, engine_speed and n,
you can change n to be an alias of engine_speed, with its maximum and
minimum values. For more information, see the next section, “Using
Aliases” on page 2-9.

• Formula

Changes a variable or constant into a formula. You have to define the right
side of the formula, and you can select the check box to calculate the range.

• Constant

Changes a variable or formula into a constant. The value of the constant is
the set point of the old item.

• Variable

Changes a constant or formula into a variable. The range is from 0 to twice
the constant’s value (negative values have a maximum of 0).

2-8

Setting Up Variable Items

See Also.

• “Setting Up Variable Items” on page 2-3

• “Using Aliases” on page 2-9

Using Aliases
The variable dictionary enables you to use the same set of variables,
constants, and formulas with many different models and calibrations.

Why Use Aliases?
It is possible that in one model or strategy the engine speed has been defined
as N, and in another it has been defined as rpm. The alias function enables you
to automatically link inputs with various names to a single CAGE variable
when you import models and strategies.

Creating an Alias
For example, in a variable dictionary there are two variables:

• N, with a range of 500 to 6500

• rpm, with a range of 2500 to 3500

To set rpm to be an alias of N,

1 Highlight the variable rpm.

2 Select Variable > Change item to > Alias.

3 In the dialog, choose N from the list.

This eliminates the variable rpm from your variable dictionary, and every
model and calibration that refers to rpm now refers to N instead.

Note If N is made an alias of rpm in the preceding example, the range of N is
restricted to the range of rpm, 2500 to 3500.

2-9

2 Variables and Models

You can also add aliases to existing items by entering a list of names in the
Alias edit box.

See Also

• “Setting Up Variable Items” on page 2-3

2-10

Setting Up Models

Setting Up Models
CAGE generally calibrates lookup tables by reference to models. The Models
view is a storage place for all the models in your session.

To view and edit the models in your session, select Models by clicking the
button shown in the Data Objects pane.

This section describes the following:

• “Importing Models” on page 2-13

• “Adding New Function Models” on page 2-15

• “Renaming and Editing Models” on page 2-17

The Models view displays the following:

• A list of all the models in the current project.

• The model connections. That is, which constants, variables, and models are
inputs to the selected model. You can use the View menu or the right-click
context menu on the graph to zoom in and out, zoom to fit, and reset.

• An image of the response surface of the selected model; you can select
factors to display. Use the View menu to choose whether to display
constraints and to edit input set points.

View > Edit Input Set Points opens a dialog where you can edit the set
points of your model variables. This alters the model display and also any
calculations involving the set points throughout CAGE. This is the same as
altering the set points in the Variable Dictionary, see “Using Set Points in
the Variable Dictionary” on page 2-6.

Following is an example of the Models display.

2-11

2 Variables and Models

The icons in the Models list indicate the type of model, as listed in the Type
column. As shown in the following illustration, a model can be a Model
Browser statistical model, the boundary of a model, the prediction error
variance (PEV) of a model, a user-defined function model, or a feature model
(converted from a feature).

2-12

Setting Up Models

You can use the “Model Properties” on page 2-20 dialog to switch a model
output between the model value and the boundary or PEV of the model. For
function models see “Adding New Function Models” on page 2-15. You can
convert a feature to a model by selecting Feature > Convert to Model.

Importing Models
CAGE enables you to calibrate lookup tables by referring to models
constructed in the Model Browser.

CAGE can only open Model-Based Calibration Toolbox model files. You can
import models from project files (.mat, .cag) and from exported model files
(.exm).

Import Models From Project
You can use the CAGE Import Tool to select models to import from any
Model-Based Calibration Toolbox project file produced in CAGE or the Model
Browser (.mat or .cag). You can replace suitable models in your current
CAGE project (note that Model Browser models must have exactly the same
input names as the CAGE model you are replacing).

See “CAGE Import Tool” on page 2-24 for instructions.

Import Exported Models File
To import models from a Model Browser exported models file (.exm):

1 Select File > Import > Model.

2 A file browser dialog opens. Locate the desired file or files.
You can select multiple files. Examples can be found in
matlab/toolbox/mbc/mbctraining.

2-13

2 Variables and Models

a If the model is saved as an .exm file, select MBC Model (*.exm) from
the drop-down menu.

b If the model is not saved as an .exm file, select All files (*.*) from
the Files of type drop-down menu. For example, the file extension
might be accidentally changed.

Click to select the model file then click Open .

This opens the Model Import Wizard.

3 Select the models that you want to import by highlighting the models from
the list, or click Select All if you want every model.

4 Either:

• Select the check box Automatically assign/create inputs, then you
can click Finish.

• Alternatively if you do not want to automatically assign or create inputs,
instead click Next to match these up manually.

5 Associate the model factors with the available inputs in your session.

For example, to associate the model factor spark with the variable spk
in your session,

2-14

Setting Up Models

a Highlight a model factor, spark, in the list on the left and the
corresponding variable, SPK, in the list on the right.

b Click the select input button, shown.

c Repeat 5a and 5b for all the model factors.

6 Click Finish to close the wizard and return you to the Models view.

Note You can skip steps 5 and 6 by selecting the Automatically
assign/create inputs box at step 6.

You can now see a display of the model surface and the model connections
(inputs).

See Also

• “Setting Up Models” on page 2-11

• “Adding New Function Models” on page 2-15

• “Renaming and Editing Models” on page 2-17

Adding New Function Models
A function model is a model that is expressed algebraically. The function
can be any MATLAB function (including user-defined functions). The only
restriction is that the function must be vectorized, that is, take in column
vectors and return a column vector of the same size, as in this example:

function y = foo(x1, x2)
y = x1 .* x2;

Once you have a function like this, you can create a function model applying it
to any models or variables in your session, like the following example.

2-15

2 Variables and Models

foo(NOX, SPK)

For example, you might want to view the behavior of torque efficiency. So you
create a function model of torque efficiency = torque/peak torque.

To add a function model to your session,

1 Select File > New > Function Model.

This opens the Function Model Wizard.

2 In the dialog box, enter the formula for your function model. For example,
enter torque_efficiency=torque/peak_torque.

3 Press Enter. CAGE checks that the function is recognized; if so, you can
click Next. If the function is incorrectly entered, you cannot click Next.

4 Select the models that you want to import by highlighting the models from
the list.

5 Click Next.

6 You can select the check box to Automatically assign/create inputs and
click Finish to close the wizard and return you to the Models view, or you

2-16

Setting Up Models

can click Next and go to the next screen. Here you can manually associate
the model factors with the available inputs as follows:

a Highlight a model factor, e.g. peak_torque, in the list on the left and the
corresponding model, peak_torque, in the list on the right.

b Click the select input button, shown.

Repeat a and b for all the model factors. Click Finish to close the wizard
and return you to the Models view.

You can now see a display of the model and its connections (inputs).

See Also

• “Setting Up Models” on page 2-11

• “Importing Models” on page 2-13

• “Renaming and Editing Models” on page 2-17

Renaming and Editing Models

Renaming Models
To rename a model,

1 Highlight the model that you want to rename.

2 Select Edit > Rename.

3 Enter the new name for the model and press Enter.

You can also rename the model by selecting a model and clicking the name, or
pressing F2.

2-17

2 Variables and Models

Editing Model Inputs
You can adjust a model so that variables, formulas, or other models are the
factors of the model. For example, a model of torque depends on the spark
angle. In place of the spark angle variable, you can use a model of the
maximum brake torque (MBT) as the spark input.

To edit the inputs of a model,

1 Highlight the model.

2 Select Model > Edit Inputs.

This opens the Edit Inputs dialog box, shown.

3 Highlight the model factor that you want to adjust, in the list on the left.

4 Highlight the new input for that factor, in the list on the right.

5 Click the Select Input button, shown.

2-18

Setting Up Models

6 To close the dialog box, click Finish.

Note If you want to change the range of a variable in the session, change
the range in the variable dictionary. For more information, see “Using the
Variable Menu” on page 2-8.

2-19

2 Variables and Models

Model Properties
Select Model > Properties (or right-click) to view information about the
selected model. This opens the Model Properties dialog where you can see the
model type, definition, inputs, availability of PEV and constraints, creation
date, user name, and toolbox version.

Model Properties: General

Here you can see the model type (such as MBC model or function model), the
number of inputs, and the availability of constraints and Prediction Error.

You can use the radio buttons to select the Output Quantity to be the

• Model Value

• Prediction error variance of model

2-20

Model Properties

• Constraint boundary of model

You can enter values in the Output saturation limits edit boxes to set
bounds on the model output values.

Model Properties: Inputs

Here you can view all the immediate inputs and variable dependencies of
your model. For some models the two lists will be the same; in the example
shown one of the inputs is another model (MBT) so the variable dependencies
list also shows the variable inputs for that model. This information is shown
graphically in the Connections pane.

2-21

2 Variables and Models

Model Properties: Model

Here you can view the model definition, the project file, and the model path.
Function model definitions are shown here. For MBC models the model
definition (showing the parameters and coefficients of the model formula) is
the same information you would see in the Model Browser part of the toolbox
when selecting View > Model Definition.

2-22

Model Properties

Model Properties: Information

Here you can see the user name associated with the model, the date of
creation and the version number of the Model-Based Calibration Toolbox used
to create the model. If you added any comments to the export information in
the Model Browser Export Models dialog this information also appears here.

2-23

2 Variables and Models

CAGE Import Tool
You can use the CAGE Import Tool to select items to import from any
Model-Based Calibration Toolbox project file produced in CAGE or the Model
Browser (.mat or .cag). This can greatly simplify setting up new projects,
and also making changes to existing projects, for example to make use of new
models in an existing optimization and calibration.

You can import Model Browser models from any project file or direct from the
Model Browser when it is open. You can import the following CAGE items
from any CAGE project: models (including feature and function models),
variables, normalizers, tables, features, optimizations, datasets and tradeoffs.

You can replace suitable items in your current CAGE project with imported
items. You can see if an item is replaceable in the Import dialog, where the
Replace action becomes available.

Note that Model Browser models (but not CAGE models) must have exactly
the same input names as the CAGE model you want to replace. You can
replace models, variables, normalizers, tables and features. You cannot
replace optimizations, datasets or tradeoffs. You cannot replace tables used in
tradeoffs with tables of a different size.

To use the CAGE Import Tool:

1 Select File > Import > From Project.

The CAGE Import Tool appears.

2 You can choose a project file or import directly from the Model Browser if it
is open. Use the toolbar buttons, or select File > Select Project File, or
File > Import From Model Browser.

If you are choosing a project file, a file browser dialog opens. Locate the
desired file and click Open.

3 The CAGE Import Tool displays the available items. Select the items you
want to import from the list. Press Ctrl+A to select all items, or Ctrl+click
or Shift+click to select multiple items in the list.

2-24

CAGE Import Tool

You can use the Find and Type controls to filter the item list:

• If you are importing from a Model Browser project you can select
Response, Switch, Datum or Response Feature from the Type list to
display a single model type only.

• If you are importing from a CAGE project you can select Variable,
Model, Normalizer, Table, Feature, Optimization, Dataset, or
Tradeoff from the CAGE items in the Type list. For models the
Subtype column displays whether a model item is an MBC model,
function model or feature model.

• Enter text in the Find edit box to find particular model names. You can
also select the box to Match case

4 Click the Import Selected Items toolbar button () or select
File > Import Selected Items.

5 The Import dialog opens displaying the items you selected for import.

2-25

2 Variables and Models

• Double-click the CAGE Item Name column cells to edit item names.

• If it is not possible to replace items in the current CAGE session then
Create new is displayed in the Action column. If it is possible to replace
an item in the current CAGE session with an imported item, the Action
column cell becomes a drop-down menu where you can select Replace or
Create new. If an exact name match item is available to be replaced the
Action drop-down menu automatically displays Replace. Change this
to Create new if you do not want to replace the existing item.

• When replacing items, double-click the CAGE Item Name column cells
to open a dialog to select the correct item to replace.

• Clear the View new item check box if you do not want CAGE to switch
to the appropriate view for the top item in the import list when you
dismiss the dialog. The CAGE Import Tool remains open either way.

• Click OK to import the items.

6 Click the Close button or select File > Close to close the CAGE Import Tool
when you have finished importing items.

See also:

• “Importing and Exporting a Variable Dictionary” on page 2-5

• “Import Exported Models File” on page 2-13

2-26

Specifying Locations of Files

Specifying Locations of Files
You can specify preferred locations of project and data files, using
File > Preferences.

Project files have the file extension .cag and store entire CAGE sessions.

Data files are the files that form part of the CAGE session. For example, the
following is a list of some of the data files used in CAGE:

• Simulink diagrams (.mdl)

• Experimental data (.xls, .csv, or .mat)

• Variable dictionaries (.xml)

• Models (.exm)

To specify preferred locations for files,

1 Select File > Preferences. This opens the dialog box shown.

2 Enter the directory or directories where your CAGE files are stored.
Alternatively, click to browse for a directory. You can specify directories
for projects, data files, model files and strategy files.

3 Click OK.

2-27

2 Variables and Models

2-28

3

Tables

This section includes the following topics:

Setting Up Tables (p. 3-3) An overview of the functionality in
the Tables view.

Adding, Duplicating and Deleting
Tables (p. 3-4)

How to add, copy and remove tables.

Table View (p. 3-6) How to view and edit tables, fill
tables by extrapolation, and use the
Table menu.

Using the History Display (p. 3-16) Comparing and reverting to previous
versions.

Calibration Manager (p. 3-20) The Calibration Manager dialog box
enables you to manage the sizes,
values, and precision of all items
that can be calibrated. You can
set these properties manually or
from a calibration file. This section
describes how to use the Calibration
Manager to set up tables and copy
table data from other sources.

Table Properties (p. 3-24) How to change table properties to
specific precision (floating-point,
polynomial ratio fixed point, or
lookup table fixed point) to suit your
ECU.

3 Tables

About Normalizers (p. 3-30) What are normalizers? A normalizer
is the axis of your lookup table. It
is the same as the collection of the
breakpoints in your table.

Normalizer View (p. 3-32) This section describes what you can
see when you highlight a normalizer
in the tree display: the input/output
display, normalizer display, and
breakpoint spacing display; and how
to edit, lock and delete breakpoints.

Inverting a Table (p. 3-39) How to use CAGE to invert tables.

Importing and Exporting
Calibrations (p. 3-46)

How to export your calibrations.

3-2

Setting Up Tables

Setting Up Tables
Select the Tables view by clicking the Tables button. It opens automatically if
you add a table using the File > New > Table menu items.

The Tables view lists all the tables and normalizers in the current CAGE
session.

Here you can add or delete tables and normalizers, and you can calibrate
them manually. Once you have added new tables here you can also fill them
using experimental data by going to the Data Sets view.

The next sections cover:

• “Adding, Duplicating and Deleting Tables” on page 3-4

• “Using the History Display” on page 3-16

• “Calibration Manager” on page 3-20

• “About Normalizers” on page 3-30

You can use the History display (from any other table or normalizer view
in CAGE) to view and reverse changes and revert to previous versions of
your tables. Use the Calibration Manager to set up tables manually or from
calibration files.

See also

• “Table View” on page 3-6 for information on using the table view
functionality once you have added tables to your project

3-3

3 Tables

Adding, Duplicating and Deleting Tables
To add or delete tables, you can first select the Tables view. CAGE
automatically switches to this view if you add a table using the File > New
menu items.

The Tables view lists all the tables and normalizers in the current CAGE
session.

Adding Tables
To add a table to a session,

1 Decide whether you want to add a one- or a two-dimensional table.

For example if you want to add a modifier table to account for the variation
in exhaust gas recirculation, add a one-dimensional table (which has one
input). If, however, you want to add a table with speed and load as its
normalizer inputs, then add a two-dimensional table.

2 Select File > New > 1D Table or File > New > 2D Table as appropriate.

Adding new tables automatically switches you to the Tables view.

3 In the Table Setup dialog you can enter the table name, number of rows
and columns and initial value, and select the input variable (or variables)
from the drop-down menus.

4 Click OK to add the new table. CAGE automatically initializes the
normalizers of the table by spacing the breakpoints evenly over the ranges
of the selected input variables.

Note You can also select Tools > Calibration Manager to change the size
of a table. For information, see “Setting Up Tables” on page 3-3.

3-4

Adding, Duplicating and Deleting Tables

You can rename tables by first selecting the table, then

• Press F2, or

• Select Edit > Rename.

You can manually calibrate by entering values in any table. You can also fill
tables using experimental data or optimization output by going to the Data
Sets view; see “Tutorial: Filling Tables from Data” in the Getting Started
documentation.

Duplicating Tables
To copy a table or a normalizer from a session,

1 Select the Tables view.

2 Highlight the required table or normalizer.

3 Select Edit > Duplicate table_name (‘table_name’ is the currently selected
table).

See also “CAGE Import Tool” on page 2-24 to add existing tables from other
CAGE project files.

Deleting Tables
When you are calibrating a collection of tables using either Feature or
Tradeoff calibrations, you cannot easily delete tables without affecting the
entire calibration. When deleting items, you must delete from the highest
level down. For example, you cannot delete a table that is part of a feature;
you must delete the feature first.

To delete a table or a normalizer from a session,

1 Select Tables view.

2 Highlight the required table or normalizer.

3 Click ; or press Delete; or select Edit > Delete table_name (‘table_name’
is the currently selected table).

3-5

3 Tables

Table View
When you select a table in the tree (under feature or tables), you see the
Table view. The following sections describe:

• “Viewing and Editing a Table” on page 3-8

• “Using the Graph of the Table” on page 3-10

• “Filling a Table by Extrapolation” on page 3-11

• “Table Menu” on page 3-12

Note For feature calibration (filling and optimizing table values by
comparing a strategy and a model), see “Calibrating the Tables” on page
4-24.

In CAGE, a table is defined to be either a one-dimensional or a
two-dimensional lookup table. One-dimensional tables are sometimes known
as characteristic lines or functions. Two-dimensional tables are also known as
characteristic maps or tables. CAGE regards them both as similar objects.

Each lookup table has either one or two axes associated with it. These axes
are normalizers. See “About Normalizers” on page 3-30.

For example, a simple MBT feature has two tables:

• A two-dimensional table with speed and relative air charge as its
normalizers

• A one-dimensional table with AFR as its normalizer

3-6

Table View

The example following is a feature view. In the Tables view for manual
calibration, you do not see the lower comparison pane because you are not
comparing tables with a model.

The parts of the display are numbered and labeled as follows:

1 The table displays the values of the breakpoints and the values of the table.

3-7

3 Tables

The table breakpoint values are not necessarily identical to the normalizer
breakpoints. When you create a table the breakpoint values are the same
as the normalizer values. If you delete breakpoints from the normalizers
the table size does not change, so the table column and row breakpoint
values are interpolated between the remaining normalizer breakpoints.
(See “Viewing and Editing a Table” on page 3-8.)

2 The graph of the table pane displays the table values graphically. (See
“Using the Graph of the Table” on page 3-10.)

3 The comparison-of-results pane displays a comparison between the current
output of the strategy and the feature model. (Only visible when calibrating
a feature, see “Inverting a Table” on page 3-39.)

Note You can view the History display by selecting View > History. For
information, see “Using the History Display” on page 3-16.

This section describes each of these parts in detail.

Viewing and Editing a Table
The table displays the values of your lookup table and displays the
breakpoints of the normalizers. For example, the following table shows a
lookup table with speed and relative air charge (load) as its normalizers.

3-8

Table View

To edit a value in the table, double-click the cell, then you can enter a value.
Selected cells are blue except for the focussed cell which is white and outlined
(typing edits the focussed cell). You can also edit table values using the table
graph, see below.

See also “Filling a Table by Extrapolation” on page 3-11, and “Adjust Cell
Values” on page 3-13 for information on applying arithmetic operations to
selected cell values or whole tables.

Locking and Unlocking Cell Values
When you are satisfied with a region of the table, you might want to lock the
cell values in that region, to ensure that those values do not change.

To lock or unlock a cell value, right-click the cell and select from the menu.
Locked cells have a padlock icon in the display. You can also lock an entire
table using the Table menu.

3-9

3 Tables

Using the Graph of the Table
The table view displays both the table values and a graph of the table. This
gives a useful display of the table’s behavior. Shown is an example of a graph
in dragging and rotation mode.

• In the default mode, you can rotate the graph of the table by clicking and
dragging the axes.

• Select View > Edit Table Surface to alter values in the table by clicking
and dragging vertically any point. In this mode, when you click a point, a
blue line indicates the selected point in the table. To return to table rotation
mode without altering table values, select View > Rotate Table Surface.

Note When editing the table surface you may drag a value unintentionally
- to return to previous table values, use the History display. See “Using
the History Display” on page 3-16.

3-10

Table View

Filling a Table by Extrapolation
Filling a table by extrapolation fills the table with values based on the values
already placed in the extrapolation mask. Using the extrapolation mask is
described below.

To fill a table by extrapolating over a preselected mask, click or select
Table > Extrapolate.

This extrapolation does one of the following:

• If the extrapolation mask has only one value, all the cell values change to
the value of the cell in the mask.

• If the extrapolation mask has two or more collinear values, the cell values
change to create a plane parallel to the line of values in the mask.

• If the extrapolation mask has three or more coplanar values, the cell values
change to create that plane.

• If the extrapolation mask has four or more ordered cells (in a grid), the
extrapolation routine fills the cells by a grid extrapolation.

• If the extrapolation mask has four or more unordered (scattered) cells,
the extrapolation routine fills the cell values using a thin plate spline
interpolant (a type of radial basis function).

Using the Extrapolation Mask
The extrapolation mask defines a set of cells that form the basis of any
extrapolation.

For example, a speed-load (or relative air charge) table has values in the
following ranges that you consider to be accurate:

• Speed 3000 to 5000 rpm

• Load 0.4 to 0.6

You can define an extrapolation mask to include all the cells in these ranges.
You can then fill the rest of your table based on these values.

To add or remove a cell from the extrapolation mask,

3-11

3 Tables

1 Right-click the table.

2 Select Add To Mask or Remove From Mask from the menu.

Cells included in the extrapolation mask are colored yellow.

Cells that are locked and in the extrapolation mask are yellow and have a
padlock icon.

When using feature calibration you can also generate the extrapolation mask
from the boundary model or from the predicted error of the model. See
“Filling the Table by Extrapolation” on page 4-30.

Table Menu
All the toolbar button functions are also found in the table menu: Initialize,
Fill, Extrapolate, Fill by Inversion. For information on these see
“Calibrating the Tables” on page 4-24.

The Table menu contains the following other options

• Adjust Cell Values. This opens a dialog where you can specify an
arithmetic operation to apply to either the whole table or only the cells
currently selected. Arguments to operations can be numeric (plus 10) or
percentages (minus 5%). You can set the selected cells to a value or to the
mean. You can also apply user-defined functions. See “Adjust Cell Values”
on page 3-13. This function is also in the table context menu.

• Extrapolation Mask

The following items are also in the table context menu:

- Add Selection — Adds selected cells to the extrapolation mask.

- Remove Selection — Removes selected cells from the extrapolation
mask.

- Clear Mask — This ensures that none of the cells are in the
extrapolation mask.

- Generate From PE — Generate extrapolation mask depending on
the value of prediction error (PE). Only available for tables in feature
calibration, as you must have a model to calculate PE. A dialog opens

3-12

Table View

where you can specify the threshold value of PE below which you want
to include cells in the mask. The dialog contains information about the
range and mean of prediction error for the model to help you select
a threshold.

- Generate From Boundary Model — Generate extrapolation mask to
include only cells within the boundary model. Only available for tables
in feature calibration, as you must have a boundary model.

• Extrapolate — Extrapolates values from the cells in the extrapolation
mask to fill the whole table. Also in the toolbar.

• Table Cell Locks The following items are also in the table context menu:

- Lock Selection — Locks the selected cells and a padlock icon appears..

- Unlock Selection — Unlocks the selected cells.

- Lock Entire Table — Locks every cell in the current table.

- Clear All Locks — Unlocks all cells in the table.

• Convert to Model. This option converts a table directly to a model.

• Properties. This opens the Table Properties dialog where you can set
the precision type of the table data. You can also reach this from the
Calibration Manager. See “Table Properties” on page 3-24.

Adjust Cell Values
This Table menu item (or right-click context menu item) opens a dialog where
you can specify an arithmetic operation to apply.

1 Select the operation to apply from the list - plus, minus, times, divide, set
to value, set to mean, or custom operation. Use the custom operation to
specify your own function in an M-file.

2 Use the Value edit box to enter an argument. All operators accept a
numeric argument (e.g. operator = plus, value = 10). You can also enter a
percentage for the operators plus, minus, and set to value (e.g. ‘minus' ‘1%’).

3 Select the radio buttons to apply the operation to either the whole table or
only the cells currently selected, and click OK.

You can use the custom operation option to apply user-defined functions.

3-13

3 Tables

The custom function is called in this way:

newvalues = customfcn(currentvalue, selectedregion)

Where currentvalue is the matrix of table values and selectedregion is a
logical matrix the same size as the table, that is "true" where a cell is selected
by the user, and false otherwise.

The newvalues matrix should be the same size as currentvalue, and these
numbers are put straight into the table.

EXAMPLES:

function table = addOne(table, region)
table(region) = table(region) + 1;
return;

function table = randomtable(table, region)
table(region) = rand(nnz(region), 1);

function table = saturate(table, region)
maxValueAllowed = 150;
table(region & table>maxValueAllowed) = maxValueAllowed;
minValueAllowed = 100;
table(region & table<minValueAllowed) = minValueAllowed ;
return

As an illustration, to use the saturate example:

1 Save the function text in an M-file named saturate.m.

2 Click and drag to select a region of cells in a CAGE table.

3 Right-click and select Adjust Cell Values.

4 In the dialog:

• Select custom operation from the Operation list

• Enter saturate in the Value edit box (the first function of that name
found on the MATLAB path will be used), or click the browse button
to locate the M-file.

3-14

Table View

• Select the radio button to Apply to selected table cells, and click OK.

The selected table cells are saturated between the ranges specified in the
function M-file (between 100-150).

3-15

3 Tables

Using the History Display
The History display enables you to view the history of any table or normalizer
in a CAGE session.

The History display lets you

• Revert to previous versions of tables and normalizers (See “Resetting to
Previous Versions” on page 3-17.)

• Compare different versions of tables and normalizers (See “Comparing
Versions” on page 3-18.)

3-16

Using the History Display

You can view the History display of a table or normalizer by selecting
View > History.

The upper pane of the History display lists all the versions of the highlighted
object.

The lower pane displays the normalizer or table of the highlighted version.

Resetting to Previous Versions
To reset the normalizer or table to a previous version, select View > History
to open the History display.

3-17

3 Tables

1 Highlight the previous version that you want to revert to.

2 Click Reset.

3 Click Close to see the updated table view.

Note Tables are independent of normalizers, so if you reset a table to a
previous version you must also reset the normalizers to that version (if
they have changed).

To remove previous versions of the object or comments,

1 Highlight the version that you want to remove.

2 Click Remove.

Adding and Editing Comments About Versions
To add comments,

1 Click Add.

2 In the dialog box enter your comment.

3 Click OK. A new History set point is added when you add a comment.

To edit comments,

1 Select the comment that you want to edit.

2 Click Edit comment.

3 In the dialog box, edit the comment.

4 Click OK.

Comparing Versions
To compare two different versions of a normalizer or table, highlight the two
versions using Ctrl+click. Note the following:

3-18

Using the History Display

• The lower pane shows the difference between the later and the earlier
versions.

• Cells that have no entries have no difference.

• Cells that have red entries have a higher value in the later version.

• Cells that have blue entries have a lower value in the earlier version.

3-19

3 Tables

Calibration Manager
To change the size of tables in CAGE, you use the Calibration Manager dialog
box. Open this tool by selecting Tools > Calibration Manager or by clicking

on the toolbar.

You can either set up your tables manually or from a calibration file. You can
also copy table data from other sources.

Note that you can enter the required inputs, number of rows and columns and
an initial value for table cells when you add a new table using the File > New
menu items. See “Adding, Duplicating and Deleting Tables” on page 3-4. You
can use the Calibration Manager to change the sizes, values and precision
of tables.

Setting Up Tables Manually

1 Select the normalizer or table to set up from the list on the left.

2 Enter the number of rows and columns in the edit boxes on the left and
select initial values for each cell in the table.

3 Click Apply.

Note When initializing tables for a feature calibration (comparing a model
to a strategy) you should think about your strategy. CAGE cannot fill those
tables if you try to divide by zero. Modifier tables should be initialized with
a value of 1 for all cells if they are multipliers, and a value of 0 if they are
to be added to other tables. See “Initializing Table Values” on page 4-25.

4 Check the display of your table, then click Close.

3-20

Calibration Manager

Setting Up Tables Using an Existing Calibration File

1 Open the file by clicking .

This opens the Import Calibration Data dialog box.

2 You can select whether you want to import from File or from ATI Vision.
See “Importing and Exporting Calibrations” on page 3-46 for details.

3 If importing from file, browse to the calibration file, select it, and click
Open. Note that empty data is filtered out and any empty variables will
not appear.

Note tutorialcal.mat is an example calibration file in the mbctraining
folder.

If importing from ATI Vision, use the Connection Manager dialog to select
the required calibration. See “Importing and Exporting Calibrations” on
page 3-46 for instructions.

4 Highlight both the table in the Calibration File Contents pane and the
table in the Project Calibration Items pane that you want to associate
with it.

5 Associate these two items by clicking .

To associate all the items listed in the Project Calibration Items
pane with items having the same names listed in the Calibration File

Contents pane, click .

6 To find particular names in a large calibration file, click the Calibration
File Contents list, and type the first few letters of the item that you are
searching for. The cursor moves to the letters specified as you type.

3-21

3 Tables

7 Check the display of your table, then click Close.

Note You can add additional file formats to configure CAGE to work with
your processes.

Contact The MathWorks for details about adding file formats at
www.mathworks.com/products/mbc/.

3-22

Calibration Manager

Copying Table Data from Other Sources
You can paste table values from other applications, such as Excel, by copying

the array in the other application and clicking Paste in the Calibration
Manager:

1 Open the desired file and copy the array that you want to import.

2 In the Calibration Manager dialog box, click Paste .

You can also set up a table from a text file:

1 Click Set Up From ASCII File in the toolbar.

2 Select the desired file, then click Open.

Note If the size of the table is different from the file that you are copying,
CAGE changes the size of the table in the session.

3-23

3 Tables

Table Properties
Table properties allow you to edit the precision of the number in selected
tables and normalizers according to the way tables are implemented in the
electronic control unit (ECU). The ECU designer chooses the type of precision
for each element to make best use of available memory or processor power.

To edit the precision of a table or normalizer,

1 Click the Edit Precisionbutton in the Calibration Manager dialog box.

Alternatively, if you highlight a table in a calibration (in the
Tables or Feature views), display the table properties by selecting
Table > Properties.

2 Decide whether you want the precision to be writable, then either select
or clear the Properties Read-only check box.

3 Select the Precision type you require for the table:

• Floating Point (See “Floating-Point Precision” on page 3-25.)

• Polynomial Ratio, Fixed Point (See “Polynomial Ratio, Fixed Point”
on page 3-26.)

• Lookup Table, Fixed Point (See “Lookup Table, Fixed Point” on page
3-28.)

The following sections describe these types of precision in detail.

3-24

Table Properties

Floating-Point Precision
The advantage of using floating-point precision is the large range of numbers
that you can use, but that makes the computation slower.

There are three types of floating-point precision that you can choose from:

• IEEE double precision (64 bit)

• IEEE single precision (32 bit)

• Custom precision

If you choose Custom precision, you must specify the following:

• Number of mantissa bits

• Number of exponent bits

You can use the Range edit boxes to set a range of values restricting the
values in the table.

3-25

3 Tables

When you are done, click OK.

See Also

• For more information on IEEE double precision in MATLAB®, see Moler,
C., “Floating points,” The MathWorks Company Newsletter, 1996.

Polynomial Ratio, Fixed Point
The advantage of using fixed-point precision is the reduction in computation
needed for such numbers. However, it restricts the numbers available to
the user.

For example, the polynomial ratio is of the form (see the ratio shown)

To edit the polynomial ratio,

3-26

http://www.mathworks.com/company/newsletter/pdf/Fall96Cleve.pdf

Table Properties

1 Select the Numerator Coefficients edit box and enter the coefficients. In
the preceding example, enter 50 0.

The number of coefficients determines the order of the polynomial, and the
coefficients are ordered from greatest to least.

2 Select the Denominator Coefficients edit box and enter the coefficients.
In the preceding example, enter 0 255.

3 Determine the range of values that you want to have in the table. In the
preceding example, enter 0 50.

To edit the size of the precision, choose from

• BYTE (8 bits)

• WORD (16 bits)

• LONG (32 bits)

• CUSTOM (Enter the Number of bits in the edit box)

Next, select the radio button to determine whether you want the numbers to
be Signed (negative and positive) or Unsigned (nonnegative).

You can use the Range edit boxes to set a range of values restricting the
allowable values in the table, though there are also limits inherent in the
storage format.

3-27

3 Tables

Lookup Table, Fixed Point

The advantage of using fixed-point precision is the reduction in computation
needed for such numbers. However, it restricts the numbers available to
the user.

For example, consider using a lookup table for the physical quantity spark
advance for maximum brake torque (MBT spark). Typically, the range of
values of MBT spark is 0 to 50 degrees. This is the physical data. The ECU
can only store bytes of information and you want to restrict the hardware
store to a range of 0 to 8, with at most one decimal place stored.

To adjust the fixed-point precision of the lookup table,

1 Select the Physical Data edit box and enter the range of the physical
data. In the example shown it is0 50.

2 Select the Hardware Data and enter the range to store. In the example
shown it is 0 8.

3-28

Table Properties

3 Determine the range of values that you want to have in the table. In the
example shown it is0 50.

To edit the size of the precision, choose from

• BYTE (8 bits)

• WORD (16 bits)

• LONG (32 bits)

• CUSTOM (Enter the Number of bits in the edit box)

In the example shown, the hardware is restricted to 8 bytes and to one
decimal place.

Choose whether you want the numbers to be Signed (negative and positive)
or Unsigned (nonnegative) by clicking the radio buttons.

You can use the Range edit boxes to set a range of values restricting the
values in the table.

3-29

3 Tables

About Normalizers
What are normalizers? A normalizer is the axis of your lookup table. It is the
same as the collection of the breakpoints in your table.

For information on using the controls, see “Normalizer View” on page 3-32

CAGE distinguishes between the normalizers and the tables that they belong
to. Using models to calibrate lookup tables enables you to perform analysis of
the models to determine where to place the breakpoints in a normalizer. This
is a very powerful analytical process.

Note For information on optimizing breakpoints with reference to a model (in
feature calibration), see “Calibrating the Normalizers” on page 4-12.

It is important to stress that in CAGE a lookup table can be either
one-dimensional or two dimensional. One-dimensional tables are sometimes
known as characteristic lines or functions. Two-dimensional tables are
also known as characteristic maps or tables. This is important because
normalizers are very similar to characteristic lines.

For example, a simple strategy to calibrate the behavior of torque in an
engine might have a two-dimensional table in speed and relative air charge (a
measure of the load). Additionally, this strategy might take into account the
factors of air/fuel ratio (AFR) and spark angle. Each of these compensating
factors is accounted for by the use of a simple characteristic line. In CAGE,
these characteristic lines are one-dimensional tables. In the example strategy,
there are the following tables and normalizers:

• One characteristic map: the torque table

• Six characteristic lines:

- Two tables: one for AFR and one for spark angle

- Four normalizer functions: speed, load, AFR, and spark angle

Notice also that a breakpoint is a point on the normalizer where you set
values for the lookup table.

3-30

About Normalizers

Thus, when you calibrate a normalizer you place the individual breakpoints
over the range of the table’s axis.

3-31

3 Tables

Normalizer View
The normalizer node shows the Normalizer view, which displays

• One normalizer if the table selected is one-dimensional

• Both normalizers if the table is two-dimensional

Note If the table has two normalizers, both are displayed, the normalizer for
the table columns at the top, the normalizer for the table rows below. This is
true whichever normalizer on the tree is highlighted.

See “Editing Breakpoints” on page 3-33.

The parts of the display as shown in the example below are:

• “Input/Output Display” on page 3-35. This shows the breakpoints of the
normalizer.

• “Normalizer Display” on page 3-35. This is a graphical representation of
the Input Output display.

• “Breakpoint Spacing Display” on page 3-36. This shows a slice of the model
(in feature calibration) over the range of the breakpoints.

• The comparison pane (for feature calibration with reference to a model). For
information, see “Viewing the Normalizer Comparison Pane” on page 4-21.

3-32

Normalizer View

Editing Breakpoints
To edit breakpoints:

• Double-click on a cell in the Input or Output column and edit the value.

• Click and drag a breakpoint in the Normalizer Display graph or the
Breakpoint Spacing display.

To view the history of the normalizer function, select View > History from
the menu. This opens the History dialog box where you can view and revert to

3-33

3 Tables

previous versions. For a more detailed description of the History dialog box,
see “Using the History Display” on page 3-16.

Locking and Unlocking Breakpoints
Locking breakpoints ensures that the locked breakpoint does not alter. You
might want to lock a breakpoint when you are satisfied that it has the correct
value.

To lock a breakpoint, do one of the following:

• Right-click the selected breakpoint in the Input/Output display and select
Lock. Locked breakpoint cells have padlock icons.

• Right-click the selected breakpoint in the Normalizer Display or
Breakpoint Spacing display and select Lock Breakpoint. Locked
breakpoints are black.

Similarly use the right-click context menus to unlock breakpoints.

Deleting Breakpoints
Deleting breakpoints removes them from the normalizer table. There are still
table values for the deleted breakpoints: CAGE determines the positions of
the deleted breakpoints by spacing them linearly by interpolation between
the nondeleted breakpoints.

Deleting breakpoints frees ECU memory. For example, a speed normalizer
runs from 500 to 5500 rpm. Six breakpoints are spaced evenly over the range
of speed, that is, at 500, 1500, 2500, 3500, 4500, and 5500 rpm. If you delete
all the breakpoints except the endpoints, 500 and 5500 rpm, you reduce the
amount stored in the ECU memory. The ECU calculates where to place
the breakpoints by linearly spacing the breakpoints between the 500 rpm
breakpoint and the 5500 rpm breakpoint.

To delete a breakpoint, right-click the breakpoint and select Delete
Breakpoint.

Deleted breakpoints are green in the Breakpoint Spacing display. You can
restore them by right-clicking and selecting Add Breakpoint.

3-34

Normalizer View

Input/Output Display

The table consists of the breakpoints of the normalizer function.

The table has inputs and outputs:

• The inputs are the values of the breakpoints.

• The outputs refer to the row/column indices of the attached table.

To change values of the normalizers in the Input Output display, double-click
a cell in the Input column and change its value.

Normalizer Display
This displays the values of the breakpoints plotted against the marker
numbers of the table (that is, the inputs against the outputs).

Click and drag the breakpoints to move them.

3-35

3 Tables

Breakpoint Spacing Display
The Breakpoint Spacing display shows

• A slice through the model in blue (when feature calibrating with reference
to a model)

• The breakpoints in red

3-36

Normalizer View

To move breakpoints, click and drag.

Show the Model’s Curvature
You might want to view the curvature of the model to manually move
breakpoints to where the model’s curvature is greatest.

To display the model slice as its second-order derivative, the curvature of
the model,

• Right-click the model in the Breakpoint Spacing display and select
Display > Model Curvature..

You can revert to displaying the model by selecting Display > Modelfrom
the right-click menu.

Multiple Slice View
By default the Breakpoint Spacing display shows one slice through the
model, shown.

3-37

3 Tables

Viewing many slices of the model gives a better impression of the curvature of
the model. For example, see the following figure.

To view multiple slices through the model,

• Right-click the model slice in the Breakpoint Spacing display and select
Number of Lines and choose the number of slices that you want to view
from the list.

3-38

Inverting a Table

Inverting a Table
You can use CAGE to produce a table that is the inverse of another table.
This involves swapping a table input with a table output, and you can invert
1-D or 2-D tables.

Inverting a table allows you to link a forward strategy to a backward strategy;
that is, swapping inputs and outputs. This process is desirable when you have
a "forward" strategy, for example predicting torque as a function of speed and
load, and you want to reverse this relationship in a "backward strategy" to
find out what value of load would give a particular torque at a certain speed.

Normally you fill tables in CAGE by comparing with data or models. Ideally
you want to fill using the correct strategy, but that might not be possible to find
or measure. If you only have a forward strategy but want a backward one, you
can fill using the forward strategy (tables or model) and then invert the table.

For example, to fill a table normally from a model, you need the model
response to be the table output, and the model inputs to be a function of the
table inputs (or it should be possible to derive the input – for example, air
mass from manifold pressure). If the available model is “inverted“(the model
response is a table input and the table output is a model input) and you
cannot change the model, you can invert the table in CAGE.

3-39

3 Tables

In the diagram of a table shown, the x- and y-axes represent the normalizers
(which you want to be spark and load) and the z-axis is the output at each
breakpoint (torque). To fill this table correctly from the model is a two-step
process. First you need to fill a table that has the same input and output as
the model, and then fill a second table by inversion.

For the inversion to be deterministic and accurate, the table to be inverted
must be monotonic; that is, always increasing or decreasing. This requirement
is explained by the following one-dimensional example. Every point on the
y-axis must correspond to a unique point on the x-axis. The same problem
applies also to two-dimensional tables: for any given output in the first table
there must be a unique input condition; that is, every point on the z-axis
should correspond to a unique point in the x-y plane. Some table inversions
have multiple values and so do not meet this requirement, just as the square
root function can take either positive or negative values. You can use the
inversion wizard in CAGE to handle this problem; you can control the
inversion process and determine what to do in these cases.

The following example illustrates a table with multiple values. There are two
solutions for a single value of torque. CAGE has a table inversion wizard that
can help overcome this problem. You can specify whether you want to use the
upper or lower values for filling certain parts of the table; this allows you to
successfully invert a multiple-valued function. See the inversion instructions
for 1-D and 2-D tables in the next sections.

3-40

Inverting a Table

The process of inverting a one-dimensional table is different from the process
of inverting a two-dimensional table.

Inverting One-Dimensional Tables
To invert a one-dimensional table,

1 Ensure that your session contains two tables:

a The first table from your forward strategy, filled

b The second table from your backward strategy, which you want to fill

2 Highlight the second table.

3 Click or select Table > Fill by Inversion.

The lower pane now acts as a wizard.

4 In the lower pane, highlight the table that you want to invert. Click Next.

5 The next page asks what CAGE should do if it encounters multiple values.
The options are

• Minimum selects the lower of the two if a given number has two possible
inverses (like selecting the negative square root of a number).

3-41

3 Tables

• Maximum selects the uppermost range if a given number has two possible
inverses (like selecting the positive square root of a number).

• Intermediate selects the middle range if a given number has more than
two possible inverses.

• Automatic selects the range that produces the least error (see below; the
last page of the wizard plots the error metric).

For example, the function y = x2 is impossible to invert over the range -1 to
1. You can specify to invert the range from 0 to 1, sacrificing the inversion
in the lower range, or the reverse. To select the range from 0 to 1, highlight
Maximum.

The display shows a comparison between the table (green) and the function
x = f-1(f(x)).

Choose one of these options, then click Next.

6 The last page of the wizard has a comparison plot that shows how successful
the inversion has been. If your forward function is y = f(x), and your inverse
function is x = g(y), then, combining these, in an ideal world, you should
have x = g(f(x)). The plot then displays a red line showing x against x and
a green line showing x against g(f(x)). The closeness of these two lines
indicates how good the inversion has been: a perfect inverse would show
the lines exactly on top of each other.

In the following example, the lines are together and then diverge; this plot
can show you which part of your table has not successfully inverted and
where you should try a different routine.

3-42

Inverting a Table

Note The automatic inversion routine tries to minimize the total distance
between these lines. This can sometimes lead to unexpected results. For
example, given the function f(x) = x^2 between -1 and 1, if you select either
positive or negative square root as the inverse, this induces a large error
in the combined inverse. If you choose g(y) = sqrt(y), then g(f(-1)) = 1, an
error of 2. To minimize this, the automatic routine might choose to send
everything to zero and accept a medium error over the whole range rather
than a large error over half the range. The more knowledge you have of
the form of the "forward" table, the more you can make an informed choice
about which routine to select.

7 Click Finish to accept the inversion or Cancel to ignore the result and
return to the original table.

Inverting Two-Dimensional Tables
To invert a two-dimensional table,

1 Ensure that your session contains two tables:

a The first table from your forward strategy, filled

3-43

3 Tables

b The second table from your backward strategy, which you want to fill

2 Highlight the second table.

3 Click or select Table > Fill by Inversion.

The lower pane now acts as a wizard.

4 In the lower pane, highlight the table that you want to invert and click
Next.

5 Identify the corresponding signals.

The forward table and backward table share a common input. This page of
the wizard lists all possible combinations of inputs into the forward and
backward tables and asks you to highlight the combination that gives the
two common inputs. To illustrate this, if the forward table gives torque
in terms of the variables engine speed and load, whereas you want the
backward table to give load in terms of RPM and Tq, then the list would
read

• RPM and engine speed

• RPM and load

• Tq and engine speed

• Tq and load
In this case, you would select the first option.

Highlight the part of the table to invert, then click Next.

6 CAGE asks what to do if it encounters multiple values. The choices are

• Maximum selects the uppermost range (like choosing a positive square
root of a number).

• Minimum selects the lower value if there are two choices (like choosing a
negative square root of a number).

• Intermediate selects the middle range when there are more than two
choices.

• Automatic selects the range that produces the least error. CAGE
tries to choose values to put in the inverse table that minimize an

3-44

Inverting a Table

error metric similar to the error metric for 1-D tables (see “Inverting
One-Dimensional Tables” on page 3-41).

Choose one of these options and click Next.

7 The last page of the wizard has a comparison plot that shows how successful
the inversion has been. If the forward function is z = f(x,y), and the inverse
function is x = g(y,z), then, combining these, in an ideal world you should
have x = g(y,f(x,y)). The plot then displays a plane showing x plotted against
x and y, and a colored surface showing g(y,f(x,y)) plotted against x and y.
The closeness of these two planes indicates how good the inversion is.

Following is an example. In this case, the forward table is a quadratic (z
= y^2); the backward table is inverted using the positive square root of z
(maximum range). As you can see, this leads to large errors at negative
values of y, but good inversion for positive values of y.

Click Finish to accept the result or Cancel to ignore the result and return
to the original table.

3-45

3 Tables

Importing and Exporting Calibrations
You can import and export calibrations in various formats.

• You can import/export the following File formats:

- Simple CSV file

- Simple M file

- Simple MAT file

- ATI Vision MAT file

- ETAS INCA DCM file (version 1)

• Or directly to/from ATI Vision (Version 2.3.3).

Note Note to use the Vision interface you must first enter mbcconfig
-visioninterface at the command line.

Importing Calibrations

1 Select File > Import > Calibration > File or ATI Vision.

Similarly, from the Calibration Manager, if you click Open Calibration File
in the toolbar, you can select File or ATI Vision in the dialog and proceed
to import in the same way.

2 If importing a file, a file browser dialog opens.

a Select the type of file you want from the Files of type drop-down list, or
leave the default All files (*.*) and CAGE will try to load the file
based on the file extension.

b Browse to the file and click Open to import.

If importing from ATI Vision, the ATI Vision Connection Manager dialog
appears.

3-46

Importing and Exporting Calibrations

a The Computer field is optional. Leave this field blank if you are using
Vision on the local machine. If you want to connect to a remote machine,
you can enter a machine name or an IP address.

b Click Connect.

If Vision is already running on the machine that you try to connect
to, MATLAB connects to Vision. If Vision is not running then it is
launched, typically with no project loaded and with the application
window invisible.

c If there is a project (.prj file) currently loaded in Vision it appears in the
Project field. If this field is blank then there is no project loaded. Type a
project file name to load that project. Note that the project file path is
relative to the machine on which Vision is running.

d Select the appropriate Vision Device, Strategy and Calibration within
your project, and click OK to import.

Exporting Calibrations

1 Select File > Export > Calibration > Selected Item or All Items.

2 The Export Calibration dialog appears. Select the format you want to
export to:

3-47

3 Tables

• ATI Vision

• ATI Vision MAT file

• INCA DCM file

• Simple CSV file

• Simple MAT file

• Simple M file
Click OK.

3 If you select ATI Vision, the ATI Vision Connection Manager dialog
appears, as for importing calibrations.

If you select a file format, a file browser appears. Choose a location and
filename and click Save.

If you choose All Items, all tables, normalizers, curves and constants in the
project are exported.

What you export when you choose Selected Item depends on which node is
highlighted:

• Selecting a Normalizer node outputs the values of the normalizer.

• Selecting a Table node outputs the values of the table and its normalizers.

• Selecting a Feature or Tradeoff node outputs the whole feature or tradeoff
(all tables, normalizers, curves and constants).

When exporting to an existing calibration file, the exported items replace
the existing items. (There is no merging of existing items and new exported
items.)

When exporting to Vision, the items in the CAGE project are matched by
name with the items in the Vision calibration and the values are replaced. It
is not possible to add new items to a Vision project by exporting from CAGE.

3-48

4

Feature Calibrations

This section includes the following topics:

Performing Feature Calibrations
(p. 4-2)

Introduction to feature calibrations
and an overview of the processes
involved.

Setting Up a Feature Calibration
(p. 4-5)

How to add a new feature, assign a
model, and set up your strategy and
tables.

Calibrating the Normalizers (p. 4-12) How to calibrate the normalizers by
spacing the breakpoints. This covers
initializing, filling, and optimizing
breakpoints with reference to a
model.

Calibrating the Tables (p. 4-24) How to initialize, fill, extrapolate
and optimize your table values with
reference to a model.

Calibrating the Feature Node
(p. 4-32)

How to calibrate a whole feature
at once, rather than table by table,
using the Feature Fill Wizard.

Feature View (p. 4-40) Functionality available in the
Feature view.

4 Feature Calibrations

Performing Feature Calibrations

A ’feature’ calibration is the process of calibrating lookup tables and their
normalizers by comparing an ECU strategy (represented by a Simulink
diagram) to a model.

The strategy is an algebraic collection of lookup tables. It is used to estimate
signals in the engine that cannot be measured and that are important for
engine control.

CAGE calibrates an electronic control unit (ECU) subsystem by directly
comparing it with a plant model of the same feature.

There are advantages to feature calibration compared with simply calibrating
using experimental data. Data is noisy (that is, there is measurement error)
and this can be smoothed by modeling; also models can make predictions for
areas where you have no data. This means you can calibrate more accurately
while reducing the time and effort required for gathering experimental data.

The basic procedure for performing feature calibrations is as follows:

1 Set up the variables and constants. (See “Setting Up Variable Items” on
page 2-3.)

2 Set up the model or models. (See “Setting Up Models” on page 2-11.)

3 Set up the feature calibration. (See “Setting Up a Feature Calibration”
on page 4-5.)

4 Calibrate the normalizers. (See “Calibrating the Normalizers” on page
4-12.)

5 Calibrate the tables. (See “Calibrating the Tables” on page 4-24.)

6 Calibrate and view the entire feature. (See “Calibrating the Feature Node”
on page 4-32.)

4-2

Performing Feature Calibrations

7 Export the normalizers, tables, and features. (See “Importing and
Exporting Calibrations” on page 3-46.)

The normalizers, tables, and features form a hierarchy of nodes, each with
its own view and toolbar. The feature view is shown.

4-3

4 Feature Calibrations

4-4

Setting Up a Feature Calibration

Setting Up a Feature Calibration
A feature calibration is the process of calibrating lookup tables and their
normalizers by comparing a collection of lookup tables to a model. The
collection of lookup tables is determined by a strategy.

A feature refers to the object that contains the model and the collection of
lookup tables. For example, a simple feature for calibrating the lookup tables
for the maximum brake torque (MBT) consists of

• A model of MBT

• A strategy that adds the two following tables:

- A speed (N), load (L) table

- A table to account for the behavior of the air/fuel ratio (A)

Having already set up your variable items and models, you can follow the
procedure below to set up your feature calibration:

1 Add a feature. This is described in the next section, “Adding a Feature”
on page 4-5.

2 Assign a model. This is described in “Assigning a Model” on page 4-6.

3 Set up your strategy. This is described in “Setting Up Your Strategy” on
page 4-6.

4 Set up the tables. This is described in “Setting Up Tables” on page 3-3.

This section describes steps 1, 2, and 3 in turn.

When you have completed these four steps, you are ready to calibrate the
normalizers, tables, and features.

Adding a Feature
A feature consists of a model and a collection of lookup tables, organized
in a strategy.

4-5

4 Feature Calibrations

To add a feature to your session, select File -> New -> Feature. This
automatically switches you to the Feature view and adds an empty feature
to your session.

An incomplete feature is a feature that does not contain both an assigned
model and a strategy. If a feature is incomplete, it is displayed as in the
tree display. If a feature is complete, it is displayed as in the tree display.

Assigning a Model
Having already added a feature and a model to your session, you can assign a
model to your feature.

To assign a model to your feature,

1 Highlight the top feature node in the tree display.

2 Click Select Model to select the model you want to work with. A dialog
box appears.

3 Highlight the correct model to assign to your feature and click OK. You will
see the model name and inputs appear above the Select Model button.

Setting Up Your Strategy
A strategy is an algebraic collection of tables, and forms the structure of the
feature.

For example, a simple strategy to calibrate a feature for MBT adds two tables:

• A table ranging over the variables speed and load

• A table to account for the behavior of the model as the AFR varies

To evaluate the feature side by side with the model, you need to have a
strategy that takes some or all of the same variables as the model. The
strategy is expressed using Simulink diagrams. You can either import a
strategy or you can construct a strategy.

The following topics are described next:

4-6

Setting Up a Feature Calibration

• “Importing a Strategy” on page 4-7

• “Constructing a Strategy” on page 4-8

• “Exporting Strategies” on page 4-10

Importing a Strategy
To import a Simulink strategy,

1 Highlight the top feature node in the tree display.

2 Select File > Import > Strategy.

3 Select the appropriate .mdl file. CAGE checks the strategy for more than
one outport.

4 Select the outport that you want to use.

If there is more than one outport to your strategy, a Simulink window
opens. Double-click the correct blue outport to parse (or import) the
strategy to your feature.

If there is only one outport to your strategy, a dialog box opens.

• Click Automatic to parse the strategy without viewing it.

• Click Manual to edit the strategy. When you are finished editing
double-click the blue outport circle to parse the strategy to your feature.
The Simulink windows close and parse this strategy to your feature.

To view a representation of your strategy, select the Feature node. Your
strategy is represented in the Strategy pane. Select View > Full Strategy
Display to switch between the full description and the simplified expression.
You can select and copy the strategy equation to the clipboard.

For information about using Simulink to amend strategies, see “Constructing
a Strategy” on page 4-8.

Example. In the matlab\toolbox\mbc\mbctraining directory, there is a
Simulink diagram called tutorial.mdl. If you import this and click Manual
in the dialog box, you see the following diagram.

4-7

4 Feature Calibrations

Double-click the Torque-Output outport to parse the strategy into the
Strategy pane.

Constructing a Strategy
For you to perform a feature calibration, the strategy and the model must
have some variables in common.

To construct a strategy using Simulink,

1 Highlight the correct feature by clicking the Feature node.

2 Select Feature > Graphical Strategy Editor or press Ctrl+E.

Three Simulink windows open:

• The strategy window for editing your strategy, like the following example.

4-8

Setting Up a Feature Calibration

• A library window with all the blocks available for building a strategy.

4-9

4 Feature Calibrations

• A library window with all the existing blocks in your session, organized
in libraries.

3 In the strategy window, build your strategy using the blocks available in
the library windows.

4 Double-click the blue outport circle to parse the strategy into the CAGE
session.

Note This closes all three Simulink windows and parses your strategy
into the feature.

For more information about using Simulink to build your strategy, see
Simulink Help.

Exporting Strategies
Simulink strategies can be exported. For example, you might want to

• Include a strategy in a Simulink vehicle model

• Compile the strategy using Real-Time Workshop® to produce C code

• Evaluate the strategy using Simulink

To export a strategy from CAGE,

4-10

Setting Up a Feature Calibration

1 Highlight the Feature node that contains the strategy that you want to
save.

2 Select File > Export > Strategy.

3 Assign a name for your strategy.

The strategy is saved as a Simulink model (.mdl) file.

4-11

4 Feature Calibrations

Calibrating the Normalizers
Select a normalizer in the tree display. This displays the Normalizer view,
where you can calibrate the normalizers.

This section describes how you can use CAGE to space the breakpoints over
the range of the normalizers.

To space the breakpoints, either click the buttons on the toolbar or select from
the following options on the Normalizer menu:

• Initialize

This spaces the breakpoints evenly along the normalizer. For more
information, see “Initializing Breakpoints” on page 4-13.

• Fill

This spaces the breakpoints by reference to the model. For example, you
can place more breakpoints where the model curvature is greatest. For
more information, see “Filling Breakpoints” on page 4-13.

• Optimize

This moves the breakpoints to minimize the least square error over the
range of the axis. For more information, see “Optimizing Breakpoints”
on page 4-17.

The next sections describe each of these in detail.

Note Fill and Optimize are only available when you are calibrating with
reference to a model, when you are performing Feature calibrations.

4-12

Calibrating the Normalizers

For more information about the Normalizer view controls, see “Normalizer
View” on page 3-32.

Initializing Breakpoints
Initializing the breakpoints places the breakpoints at even intervals along the
range of the variable defined for the normalizer. When you add a table and
specify the inputs in the Table Setup dialog, CAGE automatically initializes
the normalizers of the table by spacing the breakpoints evenly over the ranges
of the selected input variables. If you have edited breakpoints you can return
to even spacing by using the Initialize function.

To space the breakpoints evenly,

1 Click on the toolbar or select Normalizer > Initialize.

2 In the dialog box, enter the range of values for the normalizer.

3 Click OK.

For example, for a torque table with two normalizers of engine speed and
load, you can evenly space the breakpoints of both normalizers over the range
500 rpm to 6500 rpm for speed and 0.1 to 1 for the relative air charge. To
do this, in the dialog box you enter 500 6500 for the speed normalizer, N, ,
and 0.1 1 for the load normalizer, L.

Filling Breakpoints
Filling breakpoints spaces the breakpoints by reference to the model. For
example, one method places the majority of the breakpoints where the
curvature of the model is greatest. This option is only available when you
are performing Feature calibrations.

For example, a model of the spark angle that produces the maximum brake
torque (MBT) has the following inputs: engine speed N, relative air charge
L, and air/fuel ratio A. You can space the breakpoints for engine speed and
relative air charge over the range of these variables by referring to the model.

To space the breakpoints based on model curvature,

4-13

4 Feature Calibrations

1 Click or select Normalizer > Fill.

The Breakpoint Fill Options dialog box opens.

2 Choose the appropriate method to space your breakpoints, from the
drop-down menu in the dialog box.

The preceding example shows ShareAveCurv. For more information about
the methods for spacing the breakpoints, see “Filling Methods” on page
4-15.

3 Enter the ranges of the values for the normalizers.

The preceding example shows Range N 500 6500, and Range L, 0.1 1.

4 Enter the ranges of the other model variables.

CAGE spaces the breakpoints by reference to the model. It does this at
selected points of the other model variables. The example shows 11 17 for
the Range of A and 2 for the Number of points. This takes two slices
through the model at A = 11 and A = 17. Each slice is a surface in N and L.
That is, MBT(N, L, 11) and MBT(N, L, 17).

CAGE computes the average value of these two surfaces to give an average
model MBTAV(N, L).

4-14

Calibrating the Normalizers

5 Click OK.

Note If any of the breakpoints is locked, each group of unlocked
breakpoints is independently spaced according to the selected algorithm.

If you increase the number of slices through the model, you increase the
computing time required to calculate where to place the breakpoints.

Filling Methods
This section describes in detail the methods for spacing the breakpoints of
your normalizers in CAGE.

• For one-dimensional tables, the two fill methods are

- ReduceError

- ShareAveCurv

• For two-dimensional tables, the two fill methods are

- ShareAveCurv

- ShareCurvThenAve

ReduceError
Spacing breakpoints using ReduceError uses a greedy algorithm:

1 CAGE locks two breakpoints at the extremities of the range of values.

2 Then CAGE interpolates the function between these two breakpoints.

3 CAGE calculates the maximum error between the model and the
interpolated function.

4 CAGE places a breakpoint where the error is maximum.

5 Steps 2, 3, and 4 are repeated.

6 The algorithm ends when CAGE locates all the breakpoints.

4-15

4 Feature Calibrations

ShareAveCurv and ShareCurvThenAve
Consider calibrating the normalizers for speed, N, and relative air-charge, L,
in the preceding MBT model.

In both cases, CAGE approximates the MBTAV(N, L) model, in this case using
a fine mesh.

The breakpoints of each normalizer are calibrated in turn. In this example,
these routines calibrate the normalizer in N first.

Spacing breakpoints using ShareAveCurv or ShareCurvThenAve calculates
the curvature, K, of the model MBTAV(N, L),

as an approximation for

Both routines calculate the curvature for a number of slices of the model at
various values of L. For example, the figure shown has a number of slices of a
model at various values of L.

4-16

Calibrating the Normalizers

Then

• ShareAveCurv averages the curvature over the range of L, then spaces the
breakpoints by placing the ith breakpoint according to the following rule.

• ShareCurvThenAve places the ith breakpoint according to the rule, then
finds the average position of each breakpoint.

Rule for Placing Breakpoints. If j breakpoints need to be placed, the ith

breakpoint, Ni, is placed where the average curvature so far is

Essentially this condition spaces out the breakpoints so that an equal amount
of curvature (in an appropriate metric) occurs in each breakpoint interval.
The breakpoint placement is optimal in the sense that the maximum error
between the lookup table estimate and the model decreases with the optimal
convergence rate of O(N-2). This compares with an order of O(N-1/2) for equally
spaced breakpoints.

The theorem for determing the position of the unequally spaced breakpoints is
from the field of Approximation Theory — page 46 of the following reference:
de Boor, C., A Practical Guide to Splines, New York, Springer-Verlag, 1978.

Optimizing Breakpoints
Optimizing breakpoints alters the position of the table normalizers so that the
total square error between the model and the table is reduced.

4-17

4 Feature Calibrations

This routine improves the fit between your strategy and your model. The
following illustration shows how the optimization of breakpoint positions can
reduce the difference between the model and the table. The breakpoints are
moved to reduce the peak error between breakpoints. In CAGE this happens
in two dimensions across a table.

To see the difference between optimizing breakpoints and optimizing table
values, compare with the illustration in “Optimizing Table Values” on page
4-26.

See “Filling Methods” on page 4-15 for details on how the optimal breakpoint
spacing is calculated.

For an example of breakpoint optimization, say you have a model of the spark
angle that produces the MBT (maximum brake torque). The model has the
following inputs: engine speed, N, relative air charge, L, and air/fuel ratio,
A. You can optimize the breakpoints for N and L over the ranges of these
variables.

To optimize the breakpoints,

4-18

Calibrating the Normalizers

1 Ensure that the optimization routine works over reasonable values for the
table by choosing one of these methods:

a Select Normalizer > Initialize.

b Select Normalizer > Fill .

2 Click on the toolbar or select Normalizer > Optimize.

This opens the following dialog box.

3 Enter the ranges for the normalizers.

The example shows 0.2 0.811 for the Range of L, and 750 6500 for N.

4 Enter the appropriate number of grid points for the optimization.

4-19

4 Feature Calibrations

This defines a grid over which the optimization works. In the preceding
example, the number of grid points is 36 for both L and N. This mesh is
combined using cubic splines to approximate the model.

5 Enter ranges and numbers of points for the other model variables.

The example shows a Range of A of 14.3 and the Number of points is 1.

6 Decide whether or not to reorder deleted breakpoints, by clicking the radio
button.

If you choose to reorder deleted breakpoints, the optimization process
might redistribute them between other nondeleted breakpoints (if they are
more useful in a different position).

For information about deleting breakpoints, see “Editing Breakpoints”
on page 3-33.

7 Click OK.

CAGE calculates the table filled with the mesh at the current breakpoints.
Then CAGE calculates the total square error between the table values and
the mesh model.

The breakpoints are adjusted until this error is minimized, using nonlinear
least squares optimization (lsqnonlin).

When optimizing the breakpoints, it is worth noting the following:

• The default range for the normalizer variable is the range of the variable.

• The default value for all other model variables is the set point of the
variable.

• The default number of grid points is three times the number of breakpoints.

See Also

• Reference page for lsqnonlin

4-20

Calibrating the Normalizers

Viewing the Normalizer Comparison Pane
To view or hide the comparison pane, select View > Feature/Model
Comparison. Alternatively, click , the “snapper point” at the bottom
of the normalizer display panes.

The comparison pane displays a comparison between the following:

• A full factorial grid filled using these breakpoints

• The model

Note This is not a comparison between the current table values and the
model. To compare the current table values and the model, see “Comparing
the Strategy and the Model” on page 4-28.

To make full use of the comparison pane,

1 Adjust the ranges of the variables that are common to the model and table.

2 Adjust the values selected for any variables in the model that are not in
the selected table.

4-21

4 Feature Calibrations

The default for this is the set point of the variable, as specified in the
variable dictionary. For more information, see “Using Set Points in the
Variable Dictionary” on page 2-6.

3 Check the number of points at which the display is calculated.

4 Check the comparison between the table and the model.

Right-click the comparison graph to view the error display.

5 Check some of the error statistics for the comparison, and use the
comparison to locate where improvements can be made.

Error Display
The comparison pane can also be used to display the error between the model
and the ’generated table’ (grid filled using these breakpoints).

To display the error, select one of the Error items from the Plot type
drop-down list.

This changes the graph to display the error between the model and the table
values at these breakpoints.

You can display the error data in one of the following ways:

4-22

Calibrating the Normalizers

• Error (TableModel). This is the difference between the feature and the
model.

• Squared Error. This is the error squared.

• Absolute Error. This is the absolute value of the error.

• Relative Error. This is the error as a percentage of the value of the table.

• Absolute Relative Error (%). This is the absolute value of the relative
error.

See Also

• “Comparing the Strategy and the Model” on page 4-28
This describes the comparison made when a table node is selected in the
tree display.

4-23

4 Feature Calibrations

Calibrating the Tables
After you set up your session and your tables, you can calibrate your tables.

Highlight a table in the tree display to see the Table view. For more
information about the Table view, see “Table View” on page 3-6.

In CAGE, a table is defined to be either a one-dimensional or a
two-dimensional lookup table. One-dimensional tables are sometimes known
as characteristic lines or functions. Two-dimensional tables are also known as
characteristic maps or tables.

Each lookup table has either one or two axes associated with it. These axes
are normalizers. See “About Normalizers” on page 3-30 for more information.

For example, a simple MBT feature has two tables:

• A two-dimensional table with speed and relative air charge as its
normalizer inputs

• A one-dimensional table with AFR as its normalizer input

Before you can calibrate your tables, you must calibrate your normalizers.
For information, see “Calibrating the Normalizers” on page 4-12.

This section describes how you can use CAGE to fill your lookup tables by
reference to a model.

To fill the table values, either click the buttons in the toolbar, ,
or select from the following options in the Table menu:

• Initialize Table

Sets each cell in the lookup table to a specified value. For information, see
“Initializing Table Values” on page 4-25.

• Fill Table

Fills and optimizes the table values by reference to the model. For
information, see “Filling Table Values” on page 4-26.

4-24

Calibrating the Tables

• Fill by Inversion

Fills the table by creating an inversion of another table. For information,
see “Inverting a Table” on page 3-39.

• Fill by Extrapolation

Fills the table values based on the cells specified in the extrapolation mask.
You can choose values in cells that you trust to define the extrapolation
mask and fill the rest of the table using only those cells for extrapolation.
For information, see “Filling the Table by Extrapolation” on page 4-30.

The next sections describe each of these toolbar options in detail. See the
“Table Menu” on page 3-12 for other menu options.

Initializing Table Values
Initializing table values sets the value of every cell in the selected table to a
constant. You can do this when you set up a table (see “Adding, Duplicating
and Deleting Tables” on page 3-4) or later.

To initialize the values of the table,

1 Click or select Table > Initialize.

2 In the dialog box that appears, select the constant value that you want to
insert into each cell.

When initializing tables, you should think about your strategy. Filling with
zeros can cause a problem for some strategies using "modifier" tables. For
example, your strategy might use several speed-load tables for different
values of AFR, or you might use an AFR table as a "modifier" to add to a
single speed-load table to adjust for the effects of different AFR levels on
your torque output.

Be careful not to initialize modifier tables with 0 if they are multipliers in
your strategy. In this case, solving results in trying to divide by zero. This
operation will fail. If your table is a modifier that is added to other tables,
you should initially fill it with zeros; if it is a modifier that multiplies other
tables, you should fill it with 1s.

4-25

4 Feature Calibrations

Filling Table Values
To fill and optimize the table values by reference to the model,

• Click or select Table > Fill.

This opens the Feature Fill Wizard. You can fill multiple tables at once
using the wizard, and you can Fill from the top feature node or from
any table node in a feature. See “Feature Fill Wizard” on page 4-34 for
instructions.

Optimizing Table Values
The Feature Fill Wizard optimizes the table values to minimize the current
total square error between the feature values and the model.

This routine optimizes the fit between your strategy and your model. Using
Fill places values into your table. The optimization process shifts the cell
values up and down to minimize the overall error between the interpolation
between the model and the strategy.

This process is illustrated by the following example; the green shaded areas
show the error between the mesh model (evaluated at the number of grid
points you choose) and the table values.

4-26

Calibrating the Tables

To see the difference between optimizing table values and optimizing the
positions of breakpoints, compare with the illustration in “Optimizing
Breakpoints” on page 4-17.

CAGE evaluates the model over the number of grid points specified in the
Feature Fill Wizard, then calculates the total square error between this mesh
model and the feature values. CAGE adjusts the table values until this error
is minimized, using lsqnonlin if there are no gradient constraints, otherwise
fmincon is used with linear constraints to specify the gradient of the table
at each cell.

See Also.

• Reference page for lsqnonlin

• “Calibrating the Tables” on page 4-24

4-27

4 Feature Calibrations

Comparing the Strategy and the Model
When you calibrate a strategy, or collection of tables, by reference to a model,
it is useful to compare the strategy and the model. The comparison pane
provides a graphical tool for investigating this, as shown in the following
example.

Note This is a comparison between the current strategy values and the
model, unlike the comparison pane from the normalizer node, which compares
the model and a full factorial grid filled using the breakpoints.

To make full use of the comparison-of-results pane,

1 Check the ranges of the variables that are common to the model and table.
For each variable check the number of points at which the display is
calculated. Double-click to edit any variable range or number of points.

4-28

Calibrating the Tables

2 Check the values selected for any variables in the model that are not in the
selected table. The default for this is the set point of the variable’s range.
Double-click to edit.

3 Check the comparison between the table and the model. You can rotate
this comparison by clicking and dragging, so that you can view all parts of
the comparison easily.

4 Use the Plot Type drop-down menu to display the error statistics for the
comparison.

Error Display
The comparison-of-results pane can also be used to display the error between
the model and the strategy.

To display the error, select one of the Error options from the Plot Type
drop-down menu. This changes the graph to display the error between the
model and the strategy.

You can display the error data in one of the following ways:

• Error (Feature-Model). This is the difference between the feature and
the model.

• Squared Error. This is the error squared.

• Absolute Error. This is the absolute value of the error.

• Relative Error (%). This is the erroras a percentage of the value of the
model.

4-29

4 Feature Calibrations

• Absolute Relative Error (%). This is the absolute value of the relative
error.

When you have completed a calibration, you can export your feature. For
information, see “Exporting Calibrations” on page 3-47.

Filling the Table by Extrapolation
Filling a table by extrapolation fills the table with values based on the
values already placed in the extrapolation mask. The extrapolation mask is
described below. You can also choose to extrapolate automatically after filling
cells in the mask in the “Feature Fill Wizard” on page 4-34.

To fill a table by extrapolating over a preselected mask, click or select
Table > Extrapolate .

This extrapolation does one of the following:

• If the extrapolation mask has only one value, all the cell values change to
the value of the cell in the mask.

• If the extrapolation mask has two or more colinear values, the cell values
change to create a plane parallel to the line of values in the mask.

• If the extrapolation mask has three or more coplanar values, the cell values
change to create that plane.

• If the extrapolation mask has four or more ordered cells (in a grid), the
extrapolation routine fills the cells by a grid extrapolation.

• If the extrapolation mask has four or more unordered (scattered) cells,
the extrapolation routine fills the cell values using a thin plate spline
interpolant (a type of radial basis function).

Using the Extrapolation Mask
The extrapolation mask defines a set of cells that form the basis of any
extrapolation.

For example, a speed-load (or relative air charge) table has values in the
following ranges that you consider to be accurate:

4-30

Calibrating the Tables

• Speed 3000 to 5000 rpm

• Load 0.4 to 0.6

You can define an extrapolation mask to include all the cells in these ranges.
You can then fill the rest of your table based on these values.

To add or remove a cell from the extrapolation mask,

1 Right-click the table.

2 Select Add To Extrapolation Mask or Remove From Extrapolation
Mask from the menu.

Cells included in the extrapolation mask are colored yellow.

Creating a Mask from the Boundary Model or Predicted Error
You can automatically generate an extrapolation mask based on the boundary
model or prediction error. Prediction error (PE) is the standard deviation of
the error between the model and the data used to create the model.

To generate a mask automatically,

1 Select Table > Extrapolation Mask > Generate From Boundary
Model or Generate From PE

2 If you select PE, a dialog appears where you must set the PE threshold to
apply, and click OK.

The cells in the table either within the boundary model or where the
prediction error is within the threshold now form the extrapolation mask,
and thus are colored yellow.

4-31

4 Feature Calibrations

Calibrating the Feature Node
Selecting a Feature node displays the Feature view. For more information
about the Feature view, see “Feature View” on page 4-40.

The Feature view enables you to calibrate the entire feature, that is, fill all
the table values by referring to a model.

To calibrate the feature, either click the buttons on the toolbar, , or
select from the following options on the Feature menu described in these
sections:

1 “Initializing the Feature” on page 4-32

2 “Feature Fill Wizard” on page 4-34

Initializing the Feature
For example, a simple feature for maximum brake torque (MBT) consists of
the following tables:

• A speed (N), load (L) table

• A table to account for the behavior of air/fuel ratio (A)

Initializing this feature sets the values of the normalizers for speed, load,
and AFR over the range of each variable and put specified values into each
cell of the two tables.

A table that is already initialized provides a useful starting point for a more
detailed calibration.

To initialize the feature,

4-32

Calibrating the Feature Node

1 Click . This opens the Feature Initialization Options dialog box, as
shown.

2 Enter the ranges for the breakpoints in your normalizers. In the preceding
example, these are the breakpoint ranges:

• L has range 0.2 0.811.

• N has range 750 6500.

• A has range 11 17.6.

3 Enter the initial table value for each cell in each table. Above, the cell
values are

• Table_NL has initial value 0.

4-33

4 Feature Calibrations

• Fn_A has initial value 0.

4 Click OK to initialize the feature.

Note The default values in this dialog box are taken from the variable
dictionary. If you clear any Enable box, the associated table or normalizer
is left unchanged.

Feature Fill Wizard
Use the Feature Fill Wizard to fill and optimize the values in tables by
reference to the model. You can fill multiple tables at once using the wizard,
and you can Fill from the top feature node or from any table node in a feature.

Note you could also optimize the breakpoints for the normalizers before
using the Feature Fill Wizard. (See “Filling Breakpoints” on page 4-13 and
“Optimizing Breakpoints” on page 4-17.)

This section describes how to use the Feature Fill Wizard. For a detailed
description about the filling processes, see “Filling Table Values” on page 4-26.

To fill feature tables,

4-34

Calibrating the Feature Node

1 Click . This opens the Feature Fill Wizard.

Screen 1: Select tables to fill.

Select the check boxes of the tables you want to fill. For each table you
can set the following options:

• Clear Mask — select this check box to clear any table mask and fill all
unlocked table cells (locked cells are never altered). Clear this check
box to fill unlocked cells in the current extrapolation mask only, or all
unlocked cells if there is no mask.

• Extrapolate — select this to extrapolate across the whole table after
filling cells. The extrapolation is based on the filled cells in the mask
and any locked cells.

• Table Bounds — enter values here to set bounds on the table values

• Gradient Bounds — enter values here to set bounds on the gradient
(slope) between rows (left edit box) and between columns (right edit box).
For example, entering 0 Inf in the left edit box imposes the constraint
that the gradient must be positive (increasing) between successive rows.

When you have selected filling options for each table, click Next.

4-35

4 Feature Calibrations

2 Choose models and links.

• Click Select Model to choose a model to fill the tables from. The feature
filler adjusts the table cells so that the value of the feature across the
range of inputs best matches the value of this model.

• Click Select Constraint to choose a constraint model to use in the filling
process. The feature filler limits its activity to within this constraint
model, for example, the boundary constraint of a model. While boundary
models are typically used as the constraint in this setting, any function
model that returns a logical output (true for valid, false for invalid) may
also be used.

• Click Link to associate a model, feature or table (selected on the right
side) with a variable (selected on the left side). Linking replaces the
variable inputs to any relevant models and features with the linked item.
This enables useful operations such as feeding a table into a model, for
example, an optimal cam schedule into a torque model, without needing
to make a separate function model. Click Unlink to disassociate any
pair.

Click Next.

4-36

Calibrating the Feature Node

3 Set variable values. By default, the feature filler compares the feature and
model at the table breakpoints. It is also possible to compare the feature
and model on a finer grid by choosing a positive value of Interleave.
This further enhances the comparison between feature and model to
account also for errors introduced by linear interpolation in the table (see
“Optimizing Table Values” on page 4-26). An Interleave value of 1 inserts
one grid point between each pair of breakpoints, and so on.

By default the table’s normalizer breakpoints and the set points of
other variables are selected, so the number of grid points is the number
of table cells. To increase the grid size you can enter more points for
the non-normalizer variables or you can interleave values between
breakpoints. Increasing the number of grid points increases the quality of
the approximation and minimizes interpolation error, but also increases
the computation time.

• Click Normalizer Values to select normalizers to use those breakpoints
as a variable’s value.

• Enter a value in the Interleave edit box to add values between
breakpoints, then click Normalizer Values to select a normalizer.

4-37

4 Feature Calibrations

• Edit set point values in the Values edit box to optimize over a range
rather than at a single point. If you choose a range of values the table
will be filled using the average model value at each cell. For example,
if you enter -5:5:50 for the variable spark, the optimization of table
values will be carried out at values of spark between -5 and 50 in steps
of 5 degrees.

Click Next.

4 Fill Tables. Click Fill Tables to fill the tables.

CAGE evaluates the model over the number of grid points specified, then
calculates the total square error between this mesh model and the feature
values. CAGE adjusts the table values until this error is minimized, using
lsqnonlin if there are no gradient constraints, otherwise fmincon is used
with linear constraints to specify the gradient of the table at each cell.

The graph shows the change in RMSE as the optimization progresses.

• You can enter a value in the Smoothing edit box to apply a smoothing
penalty to the optimization. The Smoothness penalty uses the second

4-38

Calibrating the Feature Node

derivative to avoid steep jumps between adjacent table values. There
is a penalty as smoothing trades smoother tables for increased error.
Enter a smoothing factor (0–Inf) and click Fill Tables to observe the
difference in the resulting RMSE and the table shape. Keep increasing
the value until you reach the required smoothness. If you go too far the
results will be a flat plane.

• Select the check boxes to display plots when you close the Wizard. You
can see plots of error against all the variables (Plot), error between
feature and model (Error), table surface and error surface.

• Select the check box to create a dataset containing the output values at
each specified grid point.

You can click Back to return to previous screens and fill more tables, or
you can click Finish. When you click Finish to dismiss the wizard, the
plots with selected check boxes appear.

When you have completed a calibration, you can export your feature. For
information, see “Importing and Exporting Calibrations” on page 3-46.

4-39

4 Feature Calibrations

Feature View
As you select a Feature node you see the Feature view, shown. This section
describes the Feature view and the Feature menu options.

4-40

Feature View

The parts of the Feature view include

1 The strategy for the selected feature. This is the algebraic collection of the
tables that you are using to calibrate the selected feature.

2 The model associated with the selected feature.

3 The Feature History pane, which displays the history of the feature.

Feature Menu
The Feature menu has the following options:

• Select Model

Use this to select the correct model for your feature.

• Deselect Model

Use this to clear the current model from your feature.

• Convert to Model

Takes the current feature and converts it to a model, which you can view by
clicking the Model button.

• Graphical Strategy Editor

Opens your current strategy for editing. For more information, see “Setting
Up Your Strategy” on page 4-6.

• Parse Strategy Diagram

Performs the same function as double-clicking the blue outport of your
strategy diagram. For more information, see “Setting Up Your Strategy”
on page 4-6.

• Clear Strategy

Clears the current strategy from your feature.

• Initialize

Initializes the feature; also in the toolbar. See “Initializing the Feature” on
page 4-32 for details.

• Fill

4-41

4 Feature Calibrations

Fills and optimizes the feature; also in the toolbar. See “Feature Fill
Wizard” on page 4-34 for details.

4-42

5

Tradeoff Calibrations

This section includes the following topics:

Performing a Tradeoff Calibration
(p. 5-2)

An overview of the steps required for
tradeoff calibration.

Setting Up a Tradeoff Calibration
(p. 5-5)

How to set up a new tradeoff, add
tables, and display models.

Calibrating Tables in a Tradeoff
Calibration (p. 5-10)

An overview of how to calibrate
tables in a tradeoff calibration;
setting values for other variables
and determining suitable values at
specific operating points.

Using Regions (p. 5-21) How to use regions to fill specific
parts of your table by extrapolation.

Multimodel Tradeoffs (p. 5-23) How to set up and use multimodel
tradeoffs.

Automated Tradeoff (p. 5-30) How to use optimizations to
automate tradeoff calibrations.

5 Tradeoff Calibrations

Performing a Tradeoff Calibration

A tradeoff calibration is the process of calibrating lookup tables by adjusting
the control variables to result in table values that achieve some desired aim.

For example, you might want to set the spark angle and the air/fuel ratio
(AFR) to achieve the following objectives:

• Maximize torque

• Restrict CO emissions

The data in the tradeoff is presented in such a way as to aid the calibrator
in making the correct choices. For example, sometimes the model is such
that only a slight reduction in torque results in a dramatic reduction in CO
emissions.

The basic procedure for performing tradeoff calibrations is as follows:

1 Set up the variables and constants. (See “Setting Up Variable Items” on
page 2-3.)

2 Set up the model or models. (See “Setting Up Models” on page 2-11.)

3 Set up the tradeoff calibration. (See “Setting Up a Tradeoff Calibration”
on page 5-5.)

4 Calibrate the tables. (See “Calibrating Tables in a Tradeoff Calibration” on
page 5-10.)

5 Export the normalizers, tables, and tradeoffs. (See “Exporting Calibrations”
on page 3-47.)

You can also use regions to enhance your calibration. (See “Using Regions”
on page 5-21.)

5-2

Performing a Tradeoff Calibration

See also

• “Tutorial: Tradeoff Calibration” in the Getting Started documentation.

This is a tutorial giving an example of how to set up and complete a simple
tradeoff calibration.

• “Automated Tradeoff” on page 6-46 is a guide to using the optimization
functionality in CAGE for tradeoffs.

The normalizers, tables, and tradeoff form a hierarchy of nodes, each with its
own view and toolbar.

5-3

5 Tradeoff Calibrations

5-4

Setting Up a Tradeoff Calibration

Setting Up a Tradeoff Calibration
A tradeoff calibration is the process of filling lookup tables by balancing
different objectives.

Typically there are many different and conflicting objectives. For example, a
calibrator might want to maximize torque while restricting nitrogen oxides
(NOX) emissions. It is not possible to achieve maximum torque and minimum
NOX together, but it is possible to trade off a slight reduction in torque for
a reduction of NOX emissions. Thus, a calibrator chooses the values of the
input variables that produce this slight loss in torque instead of the values
that produce the maximum value of torque.

A tradeoff also refers to the object that contains the models and tables. Thus,
a simple tradeoff can involve balancing the torque output while restricting
NOX emissions.

After you set up your variable items and models, you can follow the procedure
below to set up your tradeoff calibration:

1 Add a tradeoff. This is described in the next section, “Adding a Tradeoff”
on page 5-5.

2 Add tables to the tradeoff. This is described in “Adding Tables to a Tradeoff”
on page 5-6.

3 Display the models. This is described in “Displaying Models in Tradeoff”
on page 5-8.

This section describes steps 1, 2, and 3 in turn.

When you finish these steps, you are ready to calibrate the tables.

Adding a Tradeoff
To add a tradeoff to your session, select File > New > Tradeoff. This
automatically switches you to the Tradeoff view and adds an empty tradeoff
to your session.

5-5

5 Tradeoff Calibrations

An incomplete tradeoff is a tradeoff that does not contain any tables. If a
tradeoff is incomplete, it is displayed as in the tree display. If a tradeoff is
complete, it is displayed as in the tree display.

After you add a tradeoff you must add tables to your tradeoff.

Adding Tables to a Tradeoff

1 Add a table by selecting Tradeoff -> Add New Table or click in the
toolbar. You can also add existing tables from your CAGE session; see
“Adding Existing Tables” on page 5-8.

Note that you must select the top tradeoff node in the tree display to use
the Tradeoff menu. This is automatically selected if your tradeoff has no
tables yet (it is the only node). You must also add at least three variables
(in the variable dictionary) to your project before you can add a table,
because CAGE needs a variable to fill the table and two more variables to
define each of the two normalizers.

A dialog box opens.

2 Enter the name for the table.

If your tradeoff already contains one or more tables, when you add
additional tables they must be the same size and have the same inputs
(and therefore have the same normalizers). So if your tradeoff has existing
tables, you can only enter the new table name and the initial value.

5-6

Setting Up a Tradeoff Calibration

For the first table in a tradeoff, you must set the normalizer inputs and
sizes:

a Edit the names for the X and Y normalizer inputs (the first two variables
in the current variable dictionary are automatically selected here).

b Enter sizes for each of the normalizers (Y input = rows, X input = columns)

3 Enter an initial value to fill the table cells, or leave this at zero.

4 Click Select to choose a filling item for a table. A dialog opens where you
can select from the models and variables in your session.

a Depending on what kind of input you want, click the radio buttons to
display models or variables or both. You can choose to also show items
that are filling another table by clearing the check box.

b Select the filling item for the table and click OK.

5 Click OK to dismiss the Table Setup dialog and create the new table.

CAGE adds a table node to the tradeoff tree. Note you can still change the
input for the table as follows. Double-click the new table in the list under

5-7

5 Tradeoff Calibrations

Tables In Tradeoff, or click to select the table (it is selected automatically
if it is the only table in the tradeoff) and then click Change Filling Item

() in the toolbar. This is also in the Tradeoff menu and the right-click
context menu.

The Select Filling Item dialog appears where you can select inputs to fill
the table, as described above.

6 Repeat this procedure for each new table you want to add. Each additional
table in the tradeoff must have the same normalizers as the first table, so
you do not have to select normalizer inputs and sizes repeatedly. For each
new table you only have to enter the name and initial value.

Adding Existing Tables

1 Add a table by selecting Tradeoff > Add Existing Tables or click in
the toolbar.

A dialog appears where you can select from a list of tables in the current
session.

2 Select a table and click OK. It may be helpful to first select the check box to
only show suitable tables that can be added to the tradeoff.

Displaying Models in Tradeoff
To display models when viewing tables in the tradeoff display,

1 Highlight the tradeoff node in the tree.

2 From the Available Models list, select the one you want to display.

Models that are filling a table are automatically displayed.

3 Click Add Model to Display List in the toolbar or in the Additional
Display Models pane to move the selected model into the Display
Models pane. To quickly add all available models to the display list, click
the display button repeatedly and each successive model will be added.

5-8

Setting Up a Tradeoff Calibration

4 Repeat steps 2 and 3 to add all the models you want to the display list.

Removing a Model

1 In the Display Models list, select the model that you want to remove.

2 Click in the toolbar, or in the Display Models pane, to move the
selected model into the Available Models pane.

3 Repeat until you have cleared all the appropriate models.
Once you have displayed all the models that you want to work with, you are
ready to calibrate your tables.

5-9

5 Tradeoff Calibrations

Calibrating Tables in a Tradeoff Calibration
Selecting a table node in the tree display enables you to view the models that
you have displayed and calibrate that table.

To calibrate the tables,

1 Select the table that you want to calibrate.

2 Highlight one operating point from the table.

3 Set the values for other input variables.

For information, see “Setting Values of Other Variables” on page 5-13.

4 Determine the value of the desired operating point.

For instructions, see “Determining a Value at a Specific Operating Point”
on page 5-15.

5 Click to apply this value to the lookup table.

This automatically adds the point to the extrapolation mask.

6 Repeat steps 2, 3, 4, and 5 at various operating points.

7 Extrapolate to fill the table by clicking in the toolbar.

For information, see “Filling the Table by Extrapolation” on page 4-30.

5-10

Calibrating Tables in a Tradeoff Calibration

After you complete all these steps you can export your calibration. For
information, see “Exporting Calibrations” on page 3-47.

5-11

5 Tradeoff Calibrations

Notice that the graphs colored green indicate how the highlighted table will
be filled:

• If a row of graphs is highlighted, the table is being filled by the indicated
model evaluation (the value shown at the left of the row).

• If the column of graphs is green, the table is being filled by the indicated
input variable (shown in the edit box below the column).

The next sections describe the following in detail:

• “Setting Values of Other Variables” on page 5-13

• “Determining a Value at a Specific Operating Point” on page 5-15

5-12

Calibrating Tables in a Tradeoff Calibration

Setting Values of Other Variables
Typically the models that you use to perform a tradeoff calibration have many
inputs. When calibrating a table of just one input, you need to set values
for the other inputs.

Setting Values for Individual Operating Points
To set values for inputs at individual operating points,

1 Highlight the operating point in the lookup table.

2 Use the edit boxes or drag the red bars to specify the values of the other
variables.

5-13

5 Tradeoff Calibrations

In the preceding example, the spark table is selected (the SPK graph is colored
green). You have to specify the values of AFR (A) and EGR (E) to be used,
for example:

1 Select the spark table node.

2 Click in the edit box for A and set its value to 14.3.

3 Click in the edit box for E and set its value to 0.

The default values are the set points of variables, which you can edit in the
Variable Dictionary.

Setting Values for All Operating Points
For example, if you are using a tradeoff to calibrate a table for spark angle,
you might want to set the initial values for tables of air/fuel ratio (AFR) and
exhaust gas recycling (EGR).

To set constant values for all the operating points of one table,

1 Highlight the table in the tree display.

2 Select one operating point in the table.

3 Enter the desired value of the cell.

4 Right-click and select Extrapolation Mask > Add Selection.

This adds the cell to the extrapolation mask.

5 Click to extrapolate over the entire table.

This fills the table with the value of the one cell.

5-14

Calibrating Tables in a Tradeoff Calibration

Determining a Value at a Specific Operating Point

Performing a tradeoff calibration necessarily involves the comparison of two
or more models. For example, in this case, the tradeoff allows a calibrator to
check that a value of spark that gives peak torque also gives an acceptable
value for the NOX flow model.

1 To select a value of an input, do one of the following:

• Drag the red line.

• Right-click a graph and select Find the minimum, maximum, or turning
point of the model as appropriate (also in the toolbar and Inputs menu).

• Click the edit box under the graph as shown above and enter the
required value.

2 Once you are satisfied with the value of your variable at this operating
point, you apply this value to the table by doing one of the following:

• Press Ctrl+T.

5-15

5 Tradeoff Calibrations

• Click (Apply Table Filling Values) in the toolbar.

• Select Tables > Apply > Fill to Table.

Right-Click Menu
Right-clicking a graph enables you to

• Find minimum of model output with respect to the input variable

• Find maximum of model output with respect to the input variable

• Find turning point of model with respect to the input variable

These first three options are also in the Inputs menu.

• Reset graph zooms (also in the View menu)

There are also toolbar buttons to find the minimum, maximum and turning
point of the selected model graph.

Using Zoom Controls on the Graphs
To zoom in on a particular region, shift-click or click with both mouse buttons
simultaneously and drag to define the region as a rectangle.

To zoom out to the original graph, double-click the selected graph, or use the
right-click Reset Graph Zooms option (also in the View menu).

Note Zooming on one graph adjusts other graphs to the same scale.

Tradeoff Table Menus

View Menu
Selecting the View menu offers you the following options:

• Table History

This opens the History display. For information, see “Using the History
Display” on page 3-16.

5-16

Calibrating Tables in a Tradeoff Calibration

• Configure Hidden Items

This opens a dialog box that allows you to show or hide models and input
variables. Select or clear the check boxes to display or hide items. This
is particularly useful if you are trading off a large number of models or
models that have a large number of factors.

• Display Confidence Intervals

When you select this, the graphs display the 99% confidence limits for
the models.

• Display Common Y Limits

Select this to toggle a common y-axis on and off for all the graphs. You can
also press CTRL+Y as a shortcut to turn common Y limits on and off.

• Display Constraints

Select this to toggle constraint displays on and off. Regions outside
constraints are shown in yellow on the graphs, as elsewhere in the toolbox.

• Graph Size

Select from the following options for number and size of graphs:

- Display All Graphs

- Small

- Medium

- Large

• Large Graph Headers

Select this to toggle graph header size. The smaller size can be useful when
you need to display many models at once.

• Reset Graph Zooms

Use this to reset if you have zoomed in on areas of interest on the graphs.
Zoom in by shift-clicking (or clicking both buttons) and dragging. You can
also reset the zooms by double-clicking, or by using the right-click context
menu on the graphs.

• Display Table Legend

5-17

5 Tradeoff Calibrations

Select this to toggle the table legend display on and off. You might want
more display space for table cells once you know what the legend means.
The table legend tells you how to interpret the table display:

- Cells with a tick contain saved values that you have applied from the
tradeoff graphs (using the ’Apply table filling values’ toolbar or menu
option).

- Yellow cells are in the extrapolation mask.

- Blue cells are in a region mask.

- Yellow and blue cells with rounded corners are both in a region and the
extrapolation mask.

- Cells with a padlock icon are locked.

Tables Menu

• Apply Fill to Table

Select this option to apply the values from the tradeoff graphs to the
selected table cell. This option is also in the toolbar, and you can use the
keyboard shortcut CTRL+T.

Note that the corresponding cell in all tables is filled with the appropriate
input, not just the cell in the currently displayed table. For example if you
have graphs for spark and EGR inputs, selecting Apply Fill to Table
fills the spark table cell with the spark value in the graphs, and the EGR
table cell with the EGR value.

• Extrapolation Mask — Also available in the toolbar and the context
menu (by right-clicking a table cell). Use these options to add and remove
cells from the mask for filling tables by extrapolation. Note that cells
filled by applying values from the tradeoff graphs (using the Apply
Fill To Table toolbar and menu option) are automatically added to the
extrapolation mask.

- Add Selection

- Remove Selection

- Clear Mask

5-18

Calibrating Tables in a Tradeoff Calibration

• Extrapolation Regions — Also available in the toolbar and the context
menu (by right-clicking a table cell). Use these options to add and remove
cells from regions. A region is an area that defines locally where to
extrapolate before globally extrapolating over the entire table. Use regions
to define high-priority areas for use when filling tables by extrapolation.
See “Using Regions” on page 5-21.

- Add Selection

- Remove Selection

- Clear Regions

• Extrapolate — This option (also in the toolbar) fills the table by
extrapolation using regions (to define locally where to extrapolate before
globally extrapolating) and the cells defined in the extrapolation mask.

• Extrapolate (Ignore Regions) — This option fills the table by
extrapolation only using cells in the extrapolation mask.

• Table Cell Locks — Also available in the context menu by right-clicking
a table cell. Use these options to lock or unlock cells; locked cells are not
changed by extrapolating.

- Lock Selection

- Unlock Selection

- Lock Entire Table

- Clear All Locks

Inputs Menu

• Reset to Last Saved Values — This option resets all the graph input
values to the last saved value. Also in the toolbar.

• Set to Table Value — This option sets the appropriate input value on
the graphs to the value in the table.

The following three options are only enabled if a graph is selected (click to
select, and a blue frame appears around the selected graph). They are also
available in the right-click context menu on the graphs.

• Find Minimum of model vs input factor

5-19

5 Tradeoff Calibrations

• Find Maximum of model vs input factor

• Find Turning Point of model vs input factor

where model and input factor are the model and input factor displayed in
the currently selected graph, for example, TQ_model vs Spark.

• Automated Tradeoff — Use this option once you have set up an
optimization, to apply that optimization to the selected region of your
tradeoff table. See “Automated Tradeoff” on page 6-46 for information.

Tools Menu

• Calibration Manager — opens the Calibration Manager. See “Calibration
Manager” on page 3-20.

• Surface Viewer — Opens the Surface Viewer. See Chapter 8, “Surface
Viewer”.

5-20

Using Regions

Using Regions
A region is an area that defines locally where to extrapolate before globally
extrapolating over the entire table.

For example, consider filling a large table that has twenty breakpoints for
each normalizer by extrapolation. Two problems arise:

• To have meaningful results, you need to set values at a large number
of operating points.

• To set values at a large number of operating points takes a long time.

To overcome this problem, you can

1 Define regions within the lookup table.

2 In each region, set the values of some operating points.

3 Click to fill the table by extrapolation.

Each region is filled by extrapolation in turn. Then the rest of the table is filled
by extrapolation. The advantage of using regions is that you can have more
meaningful results by setting values for a smaller number of operating points.

Cells are colored

5-21

5 Tradeoff Calibrations

• Yellow if they form part of the extrapolation mask

• Blue if they are part of a region

• Yellow and blue with rounded corners if they are part of the extrapolation
mask and part of a region

Defining a Region

1 Click and drag to highlight the rectangle of cells in your table.

2 To define the region, click in the toolbar, or right-click and select
Extrapolation Regions > Add Selection, or select the menu option
Tables > Extrapolation Regions > Add Selection.

The cells in the region are colored blue.

Clearing a Region

1 Highlight the rectangle of cells in your table.

2 To clear the region, click in the toolbar, or right-click and select
Extrapolation Regions > Remove Selection, or select the menu option
Tables > Extrapolation Regions > Remove Selection.

You can clear all regions at once by selecting Clear Regions from the
Extrapolation Regions submenu.

5-22

Multimodel Tradeoffs

Multimodel Tradeoffs
There are two types of tradeoff that you can add to your session, a tradeoff
of independent models, as described earlier (see “Performing a Tradeoff
Calibration” on page 5-2), or a tradeoff of interconnected models (a multimodel
tradeoff).

A multimodel tradeoff is a specially built collection of models from the Model
Browser.

You can build a series of models so that each operating point has a model
associated with it. In the Model Browser, you can export models for a
multimodel tradeoff from the test plan node. The models must be two-stage
and must have exactly two global inputs.

The procedure for calibrating by using a multimodel tradeoff follows:

1 Add the multimodel tradeoff. (See the following section, “Adding a
Multimodel Tradeoff” on page 5-24.)

2 Calibrate the tables. (See “Calibrating Using a Multimodel Tradeoff” on
page 5-27.)

3 Export your calibration. (See “Importing and Exporting Calibrations” on
page 3-46.)

The multimodel is only defined for certain cells in the tradeoff tables. These
are the operating points that were modeled using the Model Browser part
of the toolbox. These cells have model icons in the table. At each of these
operating points, you can use the model to trade off, and by doing this you can
adjust the value in the table. The multimodel is not defined for all other cells
in the table and so you cannot use models to tradeoff. You can edit these cells
and they can be filled by extrapolation. You trade off values at each of the
model operating points in exactly the same way as when using independent
models, as described in “Determining a Value at a Specific Operating Point”
on page 5-15. When you have determined table values at each of the model

operating points, you can fill the whole table by extrapolation by clicking .
See “Filling the Table by Extrapolation” on page 4-30.

5-23

5 Tradeoff Calibrations

Adding a Multimodel Tradeoff
To add a multimodel tradeoff to your session,

1 Select File > New > Tradeoff. CAGE switches to the tradeoff view and
creates a new empty tradeoff.

2 Select the new tradeoff in the tree, then select File
> Import > Multimodel Tradeoff.

The file must have been exported from the MBC Model Browser using the
Tradeoff button (only enabled for two-stage models with exactly two global
inputs). See “Multimodel Tradeoffs” on page 5-23.

3 Select the correct file to import and click Open. This opens a dialog box.

5-24

Multimodel Tradeoffs

4 In the left Model sites list, you can clear the check boxes for any models at
operating points that you do not want to import.

Notice that the operating points are displayed graphically at the top. If an
operating point is deselected, it is displayed as gray here, rather than blue.

CAGE will create tables for all the models and input variables, with
breakpoints at all the model operating points. You can choose not to create

5-25

5 Tradeoff Calibrations

all the tables; click Select Tables to choose from the list which tables
you want.

5 Choose the normalizers (axes) of the tables by using the X- and Y-axis
input drop-down menus.

6 You can adjust the number of breakpoints in the following ways:

• Leave the Automatic breakpoint settings radio button selected and edit
the relative tolerances around the model sites. Use the tolerance edit
boxes in the model setup pane. You can observe the effects of altering
the tolerances on the number of breakpoint dotted lines drawn on the
top graphic. Initially each model site has a breakpoint. If operating
points are close together, you can increase the tolerances to decrease
the number of breakpoints.

For example, if several close points may all have been intended to run
at exactly the same point, you might want to adjust the tolerances until
those model points (displayed as blue dots) only have one breakpoint
line. The number of rows and columns that will be created is displayed
in the edit boxes on the right.

• Alternatively you can select the Manual breakpoint settings radio
button and enter the number of rows and columns in the edit boxes, and
you can directly edit the values of the breakpoints.

7 Click OK.

When you click OK, CAGE creates all the tables for the multimodel tradeoff,
with breakpoints at the values you have selected.

Note When you calibrate the tables, you can only use models to tradeoff at
the operating points defined for the models. These cells have model icons
in the table. You can edit other cells, but they have no models to tradeoff
associated with them.

You can now calibrate your tables. See the next section, “Calibrating Using a
Multimodel Tradeoff” on page 5-27.

5-26

Multimodel Tradeoffs

Calibrating Using a Multimodel Tradeoff
Each editable operating point in your tables has a model icon in the cell,
like this example cell.

These cells have a model defined at that point. You use the display of these
models to help you trade off values at these points to fulfill your aims in
exactly the same way as when using independent models in "ordinary"
tradeoff mode, as described in “Determining a Value at a Specific Operating
Point” on page 5-15.

1 Change input values by dragging the red lines on the graphs or by typing
directly into the edit boxes above the graphs. Use the context menu, toolbar
or Inputs menu to find the maximum, minimum, or turning point of a
model if appropriate.

2 Look at the model evaluation values (to the left of each row of graphs)
and the input variable values (in the edit boxes below the graphs) to see if
they meet your requirements.

Remember that the green highlighted graphs indicate how the selected
table is filled: if a row is green, the model evaluation value (to the left) fills
the table at that operating point; if a column is green, the input variable
value (in the edit box below) fills the table.

5-27

5 Tradeoff Calibrations

See the example following; the SPK column of graphs is green, so the value
of SPK in the edit box is entered in the table when you click the Apply

Table Filling Values button ().

3 When you are satisfied with the tradeoff given by the value of your variable
at this operating point, you apply this value to the table by pressing Ctrl+T,

selecting Tables -> Apply Fill to Table, or clicking in the toolbar.

4 When you have determined table values at each of the model operating

points, you can fill the whole table by extrapolation by clicking . See
“Filling the Table by Extrapolation” on page 4-30.

5-28

Multimodel Tradeoffs

You can then export your calibration; see “Importing and Exporting
Calibrations” on page 3-46. An example multimodel tradeoff is shown
following.

5-29

5 Tradeoff Calibrations

Automated Tradeoff
You can use automated tradeoff to run an optimization routine and fill
your tradeoff tables. Once you have set up an optimization you can run an
automated tradeoff. As with any other tradeoff you need at least one table.
You can apply an optimization to a cell or region of a tradeoff table and the
tradeoff values found are used to fill the selected cells. You can then fill the
entire table by extrapolation.

You must first set up an optimization to use automated tradeoff.

See “Automated Tradeoff” on page 6-46 in the Optimization section for
instructions.

5-30

6

Optimization

This section includes the following topics:

Using the Optimization View (p. 6-2) An introduction to setting up your
session for optimizations.

Setting Up Optimizations (p. 6-4) Creating and running optimizations.
You use the Optimization Wizard to
choose your algorithm, algorithm
options, and free variables. You can
set up objectives and constraints
either in the wizard or from the main
Optimization view, where you can
then run optimizations.

Optimization Output View (p. 6-30) Using the optimization output views
to investigate your results and select
and export your preferred solutions.

Automated Tradeoff (p. 6-46) How to apply an optimization to a
tradeoff table.

User-Defined Optimization (p. 6-50) An overview of the process of
customizing the optimization
template to use your own
optimization routines in CAGE.

Optimization Function Reference
(p. 6-57)

Information on all the methods
available for writing your own
optimization functions.

Functions — Alphabetical List
(p. 6-63)

6 Optimization

Using the Optimization View
Optimization functionality is one of the CAGE processes. The Optimization
button can be found in the left-hand Processes pane.

To reach the Optimization view, click the button.

Here you can set up and view optimizations. As with other CAGE processes,
the left Optimization pane shows a tree hierarchy of your optimizations,
and the right panes display details of the optimization selected in the tree.
When you first open the Optimization view both panes are blank until you
create an optimization.

As for other CAGE processes, you must set up your session for an
optimization. For any optimization, you need one or more models. You can
run an optimization at a single point, or you can supply a set of points to
optimize. The steps required are

1 Import a model or models.

2 Set up a new optimization.

6-2

Using the Optimization View

Optimization functionality in CAGE is described in the following sections:

• “Setting Up Optimizations” on page 6-4

• “Optimization Output View” on page 6-30

Once you have set up an optimization you can apply it to a region in set of
tradeoff tables. See “Automated Tradeoff” on page 6-46

You can define your own optimization functions for use in CAGE. See
“User-Defined Optimization” on page 6-50

There is also a tutorial to guide you through the optimization functionality.
See “Tutorial: Optimization and Automated Tradeoff” in the Getting Started
documentation.

6-3

6 Optimization

Setting Up Optimizations
The steps for setting up optimizations are described in the following sections:

• “Optimization Wizard” on page 6-4

• “Objectives and Constraints” on page 6-11

• “Defining Variable Values” on page 6-17

• “Running Optimizations” on page 6-22

• “Optimization View Toolbar” on page 6-23

• “Optimization Parameters Dialog” on page 6-24

For an example session you could open the tradeoffInit.cag file in the
mbctraining folder.

To create a new optimization, select File > New > Optimization.

This takes you to the Optimization Wizard, which leads you through the
steps of choosing the optimization to run, specifying the number of variables
to optimize over (unless this is predefined by the function), and linking the
variables referenced in the optimization to CAGE variables.

Optimization Wizard
You use the Optimization Wizard to:

1 Choose algorithm

2 Set up free variables, objectives, and constraints options — “Optimization
Wizard Step 2” on page 6-6

3 Select free variables — “Optimization Wizard Step 3” on page 6-8

The last 3 steps you can do in the wizard or in the Optimization view:

4 Set up objectives — “Optimization Wizard Step 4” on page 6-9

5 Set up model constraints — “Optimization Wizard Step 5” on page 6-10

6-4

Setting Up Optimizations

6 Set up data sets (user defined optimizations only) — “Optimization Wizard
Step 6” on page 6-11

Step 1. First you must choose your algorithm. The first screen of the
Optimization Wizard is shown below.

The first two algorithm choices in the list are standard routines you can use
for constrained single and multiobjective optimization.

• foptcon is a single-objective optimization subject to constraints. This
function uses the MATLAB fmincon algorithm from the Optimization
Toolbox.

• NBI stands for Normal Boundary Intersection algorithm, which is
multiobjective and can also be subject to constraints.

In many cases these standard routines are sufficient to allow you to solve
your optimization problem. Sometimes, however, you might need to write
a customized optimization algorithm; to do this you can use the supplied
template to modify for your needs. Any optimization functions that you have
checked into CAGE appear in this list. See “User-Defined Optimization” on
page 6-50 for information. The Worked Example option is designed to show
you how to use the modified template. For step-by-step instructions, see the

6-5

6 Optimization

optimization tutorial section“Worked Example Optimization” in the Getting
Started documentation.

Note If you choose a user-defined optimization function at step 1, all choices
in subsequent steps depend on the settings defined by that function. When
writing user-defined optimizations you can choose to set predetermined
algorithm options or allow the user to make selections on any subsequent
screen of the Optimization Wizard.

Optimization Wizard Step 2
Here you select algorithm options for numbers of free variables, objectives,
and constraints. The optimization tries to find the best values of the free
variables. The options available depend on your selected algorithm.

• If in step 1 you select the foptcon algorithm and click Next, you get the
following choices:

The foptcon algorithm can only have a single objective, so this control
is not enabled. Choose the number of free variables and constraints you
require. You can also add constraints later.

6-6

Setting Up Optimizations

• If in step 1 you select the algorithm NBI, and click Next, you see this:

NBI must have a minimum of two objectives, and you can choose as many
free variables and constraints as you like. You can add constraints later
if required.

Click Next to proceed to setting up free variables.

6-7

6 Optimization

Optimization Wizard Step 3
You must select variables to link with the free variables used in your
optimization.

Use this screen to associate the variables from your CAGE session with the
free variable(s) you want to use in the optimization. Select the correct pair
in the right and left lists by clicking, then click the large button as indicated
in the figure.

Once you have assigned your free variables here you can either click Next or
Finish. This also applies to all later steps in the Optimization Wizard.

• If you click Next you proceed to further screens of the Optimization Wizard
where you can set up objectives and constraints.

• If you click Finish you return to the Optimization view in CAGE. You can
set up your objectives and constraints from the Optimization view instead
of using the Optimization Wizard. You cannot run your optimization until
objectives (and constraints if required) have been set up.

6-8

Setting Up Optimizations

Optimization Wizard Step 4

You can set up your objectives here or you can set them up at the Optimization
view in CAGE. See “Objective Editor” on page 6-12.

Here you can select which models from your session you want to use for the
optimization, and whether you want to maximize or minimize the model
output. The foptcon algorithm is for single objectives, so you can only
maximize or minimize one model. The NBI algorithm can evaluate multiple
objectives. For example, you might want to maximize torque while minimizing
NOX emissions. Remember you can also define constraints later, for example,
using emissions requirements.

You can also include ‘helper’ models in your user-defined optimizations, so
you can view other useful information to help you make optimization decisions
(this is not enabled for NBI or foptcon).

• Click Next to proceed to setting up constraints.

• Click Finish to complete the Optimization Wizard and return to the
Optimization view. Note you can only set up point objectives in the
wizard, but you can also set up sum objectives in the main Optimization
view. See “Objectives and Constraints” on page 6-11.

6-9

6 Optimization

Optimization Wizard Step 5

You can use models to define constraint regions that restrict free variables.
If you want to use constraints you can select them here, or add them in the
Optimization view in CAGE. You can also add other types of constraints in
the Optimization view. See “Constraint Editor” on page 6-15.

Select a model for each constraint by selecting a CAGE model and a model
constraint and clicking the button to match them up.

For each constraint enter a value in the edit box. Select the operator to define
whether the optimization output should be constrained to be greater than or
less than the value. The example shown is NOXFLOW_Model <= 250.

• Click Finish to complete the Optimization Wizard and return to the
Optimization view. Note you can only set up point constraints in the
wizard, but you can also set up sum constraints in the main Optimization
view. See “Objectives and Constraints” on page 6-11.

• You can only click Next to proceed to setting up any data sets if required
by your user-defined optimization.

6-10

Setting Up Optimizations

Optimization Wizard Step 6

If your user-defined optimization allows you to add a data set you can select
it on step 6 of the Optimization Wizard. You can use data sets to evaluate
models over a different set of operating points during an optimization run. As
an example, you could run an optimization at the points (N1, L1), (N2, L2), but
an important quantity to monitor and possibly act upon is, say, temperature
at points (N3, L3), (N4, L4). You can monitor this through the use of data sets
to help you select optimization results. You can set up data sets here or in the
Optimization view in CAGE (select Optimization > Edit Data Sets).

Data sets are not enabled for foptcon and NBI optimizations.

Click Finish to return to the Optimization view in CAGE.

Objectives and Constraints
You can set up objectives and constraints from the main CAGE Optimization
view, as well as within the Optimization Wizard.

To edit an objective or constraint,

• Double-click objectives and constraints in the Objectives or Constraints
panes

• Right-click an objective or constraint and select Edit.

• Click to select an objective or constraint and select Optimization >
Objectives > Edit Objective, or Optimization > Constraints > Edit
Constraint.

You can also use the context and Optimization menus to Add or Delete
objectives or constraints, if allowed by the algorithm (foptcon can only have a
single objective).

You can run two types of optimizations, point optimizations and sum
optimizations. Point optimizations look for the optimal values of each
objective function at each point of an operating point set. A sum optimization
finds the optimal value of a weighted sum of each objective function. The
weighted sum is taken over each point, and the weights can be edited. For an

6-11

6 Optimization

example see the tutorial section “Sum Optimization” in the Getting Started
documentation.

You need to use the Objective Editor and Constraint Editor to set up sum
objectives and model sum constraints. You must do this to run weighted sum
optimizations. You cannot set these up from the Optimization Wizard.

You can also set up linear, 1– and 2–D table, and ellipsoid constraints in
the Constraint Editor, as for designs in the Model Browser part of the
Model-Based Calibration Toolbox.

See

• “Objective Editor” on page 6-12

• “Constraint Editor” on page 6-15

Objective Editor
Double-click or right-click objectives to open the Edit Objectives dialog.

6-12

Setting Up Optimizations

You can select Point objective or Sum objective from the Objective type
drop-down menu. Use sum objectives only for weighted sum optimizations;
otherwise, use point objectives.

Point Objectives
The preceding example shows the point objective controls. Select which
models from your session you want to use for the optimization, and whether
you want to maximize or minimize the model output. The foptcon algorithm
is for single objectives, so you can only maximize or minimize one model. The
NBI algorithm can evaluate multiple objectives. For example, you might want
to maximize torque while minimizing NOX emissions.

You can also include ’helper’ models in your user-defined optimizations, so
you can view other useful information to help you make optimization decisions
(this is not enabled for NBI or foptcon).

These are the same options you can choose in the Optimization Wizard. See
“Optimization Wizard Step 4” on page 6-9.

Sum Objectives
For weighted sum optimizations you must make all objectives sum objectives.
See the following example.

6-13

6 Optimization

As for point objectives, select which models from your session you want to
use for the optimization, and whether you want to maximize or minimize
the model output.

You can edit weights in the Optimization view, to make certain operating
points more important, giving more flexibility to solutions for other points.
The weights are applied to each solution to calculate the weighted sums. You
can edit the weights in the Fixed Variable Values pane. This is the same
process as selecting weights for the Weighted Pareto View. See “Weighted
Objective Pareto Slice” on page 6-34.

In the Edit Objective dialog, the Expected sum of weights is optional.
However if it is used (and set correctly), then it will improve the performance
of the optimization. When the expected sum is set correctly, it scales the
objective sum onto a range that is commensurate with the other optimization
objectives and constraints.

The Expected sum of weights is a normalization value per run - all weights
are divided by this, to try to make the normalized weights sum to 1 for each

6-14

Setting Up Optimizations

run. With this normalization, the objective sum should approximately vary
on the same range as the other optimization objectives and constraints. For
instance if you have two operating points per run, and the Expected sum of
weights is 5, you can set the weights in the Fixed Variable Values pane to
2 and 3 for each operating point respectively, to make the normalized weights
sum to 1. See “Using Variable Values Length Controls” on page 6-19 to set
multiple operating points per run.

For a tutorial example of a sum optimization, see “Sum Optimization” in
the Getting Started documentation.

Constraint Editor
Double-click or right-click constraints to open the Edit Constraints dialog.
Here you can select Linear, Ellipsoid, 1D Table, 2D Table, Model, and
Sum Constraint from the Constraint type drop-down menu. For a tutorial
example of a sum optimization, see “Sum Optimization” in the Getting Started
documentation.

You can have a mixture of point and sum constraints. For fmincon
optimizations, if you have a weighted sum constraint, you must use sum
objectives or the problem cannot be evaluated.

The model constraint settings are shown below.

6-15

6 Optimization

For linear, ellipsoid and table constraints, see Constraint Types in the Designs
chapter of the Model Browser documentation. These are the same constraints
you can apply to designs in the Model Browser part of the Model-Based
Calibration Toolbox. In the context of optimization you can also select any
variable as a constraint input on the Input tab.

Model
To construct a model constraint,

1 Select an Input model in the left list.

2 You can use the Evaluate quantity drop-down list to choose Evaluation
value, Boundary constraint, or PEV value (model prediction error
variance) to define your constraint.

3 Choose the appropriate radio button to either enter a value in the Constant
edit box, or to select a CAGE item from the list of models or variables.

6-16

Setting Up Optimizations

4 Select the Constraint type operator to define whether the optimization
output should be constrained to be greater than or less than the constant or
item value specified on the right.

5 Check the displayed Constraint description, and click OK.

Sum Constraint
Use these for weighted sum optimizations. Choose a model, constraint bound
value and operator. You can also select an Expected sum of weights
normalization value per run to improve the performance of the optimization.

See the explanation under “Sum Objectives” on page 6-13.

See the tutorial “Sum Optimization” in the Getting Started documentation
for a step-by-step example.

Defining Variable Values
When you click Finish to complete the Optimization Wizard, you return to
the Optimization view in CAGE. Your new optimization appears as a new
node in the tree pane on the left, and the setup details appear on the right.
You can now define variable values if you want.

In the optimization view you can use the Variable Values panes to define a set
of operating points for the optimization. Note that you do not have to choose
a set of operating points; if you do not, the optimization will run at a single
point of your choosing (the set points of variables is the default).

Running the optimization requires the selected models to be evaluated (many
times over) and hence values are required for all the model input factors. The
default values for the fixed variables are their set points, as shown in the
Fixed Variable Values pane. You have chosen one or more free variables, so
the optimization will choose different values for those free variables in trying
to find the best value of the objectives. The default initial value for a free
variable is the set point, as shown in the Free Variable Initial Values pane.

To define the set of operating points for the optimization,

6-17

6 Optimization

1 In the Free Variable Initial Values pane, increase the Number of
runs. New rows appear in both fixed and free variable values panes, all
containing the default set point values of each variable. Each row defines
an operating point for an optimization run.

2 Edit the values in the Fixed Variable Values pane to define the points to
run the optimization. You can select Optimization > Import From Data
Set if you have suitable variables to import, or you can copy and paste
values from other parts of CAGE (existing optimizations or data sets etc.),
or from the Help Browser or other documents. An example is shown.

3 Similarly you can edit the values in the Free Variable Initial Values
pane to define the starting values of the free variables if you want, or you
can leave these at the default.

Note for foptcon optimizations you can specify a number of initial starting
values per run, see “foptcon Optimization Parameters” on page 6-24.

If you wish to restrict the range of the free variables, you can select
Optimization > Edit Free Variable Ranges. The default is the range of
the variable as defined in the Variable Dictionary.

4 You can increase the number of values of any variable per run, as shown in
the following example. You can edit the Number of Values directly or you
can select Optimization > Set Variable Length to change all variable
lengths at once. Use the Vector display format drop-down list to change
how these are shown.

6-18

Setting Up Optimizations

Note an foptcon point optimization cannot have a Number of values
greater than one. See the next section “Using Variable Values Length
Controls” on page 6-19 for details.

Using Variable Values Length Controls
At the optimization node the fixed and free variable values panes have
Number of Values controls for each variable. Use these controls to increase
the number of operating points per optimization run. If you leave all the
Number of Values set to one, each row in the values panes represents one
optimization run. If you increase the Number of Values of a fixed or free
variable, then the number of operating points within each run increases,
as shown in the following example.

6-19

6 Optimization

In this example, each run contains two different values of L, so each run
contains two operating points.

• N Number of Values = 1; L Number of Values = 2

• Run 1: N = 1000 L = [0.2;0.3]

Run 2: N = 2000 L = [0.2;0.3] etc.

N L

Run 1, point 1 1000 0.2

Run 1, point 2 1000 0.3

Run 2, point 1 2000 0.2

Run 2, point 2 2000 0.3

For an example using these controls, see the tutorial section “Sum
Optimization” in the Getting Started documentation.

You can quickly toggle between N runs of one point and a single run of N
points (which can be used as a drive cycle for sum optimization problems)
using the Optimization menu items Convert to Single Run and Convert
to Multiple Runs.

6-20

Setting Up Optimizations

The following table shows the input/output relationships for objectives and
constraints.

Maximum
Input
Length

Output length for objectives/constraints

Point
objective

Sum
objective

Sum Model
Constraint

All other
constraints
(linear, 1D,
2D, model)

1 1 1 1 1

N (>1) N (not
allowed for
foptcon)

1 1 N

An foptcon point objective can have only one output — therefore you cannot
have a Number of Values greater than one for an foptcon single-objective
optimization unless you use a sum objective (which returns a single output
per run regardless of length). If the Number of Values is more than one for
a sum objective, the result is the sum across all operating points within a run.

6-21

6 Optimization

Running Optimizations
When you click Finish to complete the Optimization Wizard, you return to
the Optimization view in CAGE. Your new optimization appears as a new
node in the tree pane on the left, and the setup details appear on the right.
An example follows:

If your optimization is ready to run you can click Run Optimization in the
toolbar to proceed. You may want to define variable values before running the
optimization. If you need to set up any objectives or constraints Run will not
be enabled. If your optimization is ready to run you can also click Set Up and
Run Optimization if you want to change algorithm-specific settings such as
number of required solutions and tolerances for termination.

6-22

Setting Up Optimizations

• If you click Set Up and Run Optimization, you can change settings in
the “Optimization Parameters Dialog” on page 6-24, then when you click
OK the optimization process begins.

• If you click Run Optimization instead, you do not see the optimization
settings, but go straight to running the optimization.

You will see a progress bar as the optimization proceeds. When it is finished,
a new Output node appears under your Optimization node in the tree and the
view automatically switches to this node where you can analyze the results.
An example tree is shown. See “Optimization Output View” on page 6-30.

Optimization View Toolbar

• Add Objective — Adds an objective to your optimization (if enabled;
remember foptcon can only have a single objective). You must double-click
the new objective to open the Objective Editor, select a model, and set
whether to maximize or minimize.

• Add Constraint — Adds a constraint to your optimization. You must
double-click the new constraint (in the list of constraints) to open the
Constraint Editor and set up the constraint.

• Import initial data from a data set — you can populate the Variable Values
panes by importing from a data set.

• Set Up Optimization — Opens the Optimization Parameters dialog where
you can change optimization settings such as tolerances and number
of solutions. When you close the dialog the settings are saved but the
optimization does not run.

6-23

6 Optimization

• Set Up and Run Optimization — Opens the Optimization Parameters
dialog where you can change optimization settings such as tolerances and
number of solutions. When you close the dialog the optimization requests
starting values and then runs.

• Run Optimization — Starts the optimization. See “Running Optimizations”
on page 6-22 above.

Optimization Parameters Dialog
The settings in this dialog are algorithm specific. Note if you edit these
settings and later want to return to the defaults, select Optimization >
Reset Parameters.

Following is an example showing the foptcon options. For the NBI options,
see the next section, “NBI Optimization Parameters” on page 6-25.

foptcon Optimization Parameters
The foptcon optimization algorithm in CAGE uses the MATLAB fmincon
algorithm from the Optimization Toolbox. foptcon wraps up the fmincon
function so that you can use the function for maximizing as well as
minimizing. For more information, see the fmincon reference page in the
Optimization Toolbox documentation, fmincon.

6-24

Setting Up Optimizations

• Display — choose none, iter, or final. This setting determines the level
of diagnostic information displayed in the MATLAB workspace.

- none — No information is displayed.

- iter — Displays statistical information every iteration.

- final — Displays statistical information at the end of the optimization.

• Maximum function evaluations — Choose a positive integer.

Maximum number of function evaluations allowed

• Maximum iterations — Choose a positive integer.

Maximum number of iterations allowed

• Variable tolerance — Choose a positive scalar.

Termination tolerance on the free variables

• Function tolerance — Choose a positive scalar.

Termination tolerance on the function value

• Constraint tolerance — Choose a positive scalar.

Termination tolerance on the constraint violation

• Number of start points — Choose a positive integer, N. (N-1) start points
per run are chosen using a latin hypercube design to cover the space, in
addition to the starting value specified in the Free Variable Initial Values
pane.

• Run from feasible start points only — select this to terminate all runs
that start with an initial value that does not satisfy the constraints. If this
condition is not met this is reported in Output message, in the Solution
Information pane of the Optimization Output view.

NBI Optimization Parameters
The example following shows the NBI options in the Optimization Parameters
dialog.

6-25

6 Optimization

Background on the NBI (Normal Boundary Intersection
Algorithm)
To understand the options for the NBI algorithm, some limited understanding
of the algorithm is required. For more information on the NBI algorithm, see
the NBI home page at the following URL:

http://www.caam.rice.edu/~indra/NBIhomepage.html

The NBI algorithm is performed in two steps. The first step is to find the
global extrema of each objective individually. This is called the shadow
minima problem, and is a single-objective problem for each objective function.

6-26

http://www.caam.rice.edu/%7Eindra/NBIhomepage.html

Setting Up Optimizations

The MATLAB routine fmincon is used to find these extrema. Once these
extrema are found, they can be plotted against each other. For example,
consider an NBI optimization that simultaneously maximizes TQ and
minimizes NOX emissions. A plot of the extrema against each other might
resemble the following.

The second step is to find the "best" set of tradeoff solutions between your
objectives. To do this, the NBI algorithm spaces Npts start points in the (n-1)
hypersurface, S, that connects the shadow extrema. In the above example,
S is the straight line that connects the points N and T. For each of the Npts
points on S, the algorithm tries to maximize the distance along the normal
away from this surface (this distance is labeled L in the following figure). This
is called the NBI subproblem. For each of the points, the NBI subproblem is
a single-objective problem and the algorithm uses the MATLAB fmincon
routine to solve it. This is illustrated below for the TQ-NOX example.

6-27

6 Optimization

The figure above shows spacing of the points between the extrema along
the (n-1) surface. The algorithm tries to maximize the distance L along the
normal away from the surface. The following figure shows the final solution
found by the NBI algorithm.

6-28

Setting Up Optimizations

NBI Options

• Tradeoff points per objective pair (Np)
The number of tradeoff solutions between your objectives that you want to
find, Npts, is determined by the following formula

where

• Np is the number of points per objective pair.

• n is the number of objective functions.

Note the following:

• For problems with two objectives (n = 2),

• For problems with three objectives (n = 3),

• Shadow minima options and NBI subproblem options

As the NBI algorithm uses the MATLAB fmincon algorithm to solve the
shadow minima problem and the NBI subproblems, the options here are
similar to those for the foptcon library function. For more information on
these options, see the previous section, “foptcon Optimization Parameters”
on page 6-24.

6-29

6 Optimization

Optimization Output View
When you have run an optimization an Output node appears in the
optimization tree and the Optimization Output views appear. Use the
toolbar buttons to determine what is displayed in the table and the graph
views. The first default view is the Solution Slice table and the Objective
Slice Graphs.

Use these toolbar buttons or the View menu to select the following Table
Views:

• “Solution Slice” on page 6-31

• “Pareto Slice” on page 6-33

• “Weighted Objective Pareto Slice” on page 6-34

• “Selected Solution Slice” on page 6-36

Use these toolbar buttons to select the following Graph Views:

• “Objective Slice Graphs” on page 6-38

• “Pareto Front Graphs” on page 6-39

• “Constraint Slice Graphs” on page 6-40

• “Constraint Summary Table” on page 6-40

You can split and add these views as in the Design, Data and Boundary
Editors — use the right-click context menu, the View menu, or the buttons
in the view title bars.

The last four toolbar buttons are also in the Solution menu:

6-30

Optimization Output View

• Select solution — this is for multiobjective optimization, used for choosing
your preferred solution for each operating point. See “Selected Solution
Slice” on page 6-36.

• Edit pareto weights — used for evaluating weighted sums. See “Weighted
Objective Pareto Slice” on page 6-34.

• Export to data set — exports the table visible in the current view only to
a new data set (the name of the data set is taken from the name of the
optimization node).

• Fill tables using optimal solutions — opens the Table Filling From
Optimization Results Wizard. See “Filling Tables From Optimization
Results” on page 6-40

Check the Solution Information pane for details such as the Output
message for the selected solution. Here you can see, for example, if an foptcon
optimization run terminated because no feasible start point was found.

Solution Slice
The Solution Slice view (click) shows a table with one solution at all
operating points.

The following example shows a Solution Slice table display.

6-31

6 Optimization

The Solution Slice view shows a table of one solution at all operating points
in the set. For single-objective optimizations there is only one solution per
operating point, so the Solution Slice is the only useful view and the Solution
controls at the top are disabled. For multiobjective optimizations with more
than one solution per run you can scroll through the solutions using the
arrows or edit box at the top.

The table shows the selected solution at all operating points. Note that if you
export the output to a data set (using the toolbar button) it is the current
table that is exported.

Click in the table to make the graph views (objective slice, constraint slice and
pareto front) display the selected operating point.

• The “Objective Slice Graphs” on page 6-38 show the objective functions at
the operating point selected in the table, with the solution value in orange.

• If you have constraints you can also choose to display the “Constraint Slice
Graphs” on page 6-40. These show the constraint functions at the selected
operating point with the solution value in orange.

6-32

Optimization Output View

• If you are viewing a multiobjective optimization you can also choose to
display the “Pareto Front Graphs” on page 6-39 which show the available
solutions with the current selection highlighted in red.

• You can also display the “Constraint Summary Table” on page 6-40 which
details the distance to each constraint edge for the selected operating point
in the table. This can be useful to see at a glance if a solution met all the
constraints. If there are many constraints it can be time-consuming to use
the constraint graphs to verify this.

Note that before you run an NBI optimization you can specify how many
solutions you want the optimization to find, using the Set Up and Run
Optimization toolbar button.

For information on selecting best solutions at each operating point for
subsequent export to a data set, see “Selected Solution Slice” on page 6-36.

Pareto Slice
The Pareto Slice table view (click) is for multiobjective optimization where
there is more than one solution at each point. The Pareto Slice shows a table
of all solutions at one run; you can scroll through the runs using the arrows
or edit box at the top.

Note that before you run an NBI optimization you can specify how many
solutions you want the optimization to find, using the Set Up and Run
Optimization toolbar button.

6-33

6 Optimization

You can also display “Pareto Front Graphs” on page 6-39 (click) which
show the available solutions with the current selection highlighted in red.

Use the pareto front graphs and “Objective Slice Graphs” on page 6-38 to
select the best solution for the operating point. If you have constraints you can
also use the “Constraint Slice Graphs” on page 6-40 and “Constraint Summary
Table” on page 6-40 to help you decide which solution to choose for each run.

When you have decided which solution you want to use for the currently
selected operating point you can select it as best by clicking Select

Solution () in the toolbar. You cannot select solutions until you enable
the Selected Solutions view. See “Selected Solution Slice” on page 6-36. You
can also select best solutions in the Solution Slice view, see “Solution Slice”
on page 6-31 .

Weighted Objective Pareto Slice
The Weighted Objective Pareto Slice view (click) shows a weighted
sum Pareto solution. This is a weighted sum of the objective values over all
operating points for each solution. For a single objective optimization there is
a single cell — the sum of the objective across all runs.

In the following multiobjective example, the value in the Objective1 column
in the first row shows the sum of the solution 1 values of the first objective
across all runs. The second row shows the sum of solution 2 Objective1
values across all runs, and so on for all ten solutions in this case. This can be
useful, for example, for evaluating total emissions across a drive cycle. The
default weights are unity (1) for each run.

6-34

Optimization Output View

You can change the weights; for example, if you need a weighted sum
of emissions over a drive cycle, you might want to give a higher weight
to the value at idle speed. You can alter weights by clicking Edit Pareto

Weights () in the toolbar. The Pareto Weights Editor appears.

6-35

6 Optimization

Here you can select models to sum, and select weights for any operating point
by clicking and editing, as shown in the example above. The same weights are
applied to each solution to calculate the weighted sums. Click OK to apply
new weights, and the weighted sums are recalculated.

You can also specify weights with a MATLAB vector or any data column in
your data set by selecting the other radio buttons. If you select Data column
you can also specify which solution; for example, you could choose to use the
values of spark from solution 5 at each operating point as weights. Click
Table Entry again, and you can then view and edit these new values.

Note Weights applied in the Weighted Pareto View do not alter the results
of your optimization as seen in other views. You can use the weighted sums to
investigate your results only. You need to perform a sum optimization if you
want to optimize using weighted operating points.

Selected Solution Slice
In a multiobjective optimization, there is more than one possible optimal
solution at each operating point. You can use the Selected Solutions view
to collect and export those solutions you have decided are optimal at each
operating point.

Once you have enabled the Selected Solution view, you can use the plots
in the Pareto Front Graphs view and Solution Slice table view to help you
select best solutions for each operating point. These solutions are saved in
the Selected Solutions view. You can then export your chosen optimization
output for each point from the Selected Solutions view, or use your
optimization output to fill tables.

1 You cannot select best solutions until you have enabled the Selected
Solutions view. Do this by selecting Solution -> Selected Solution ->
Initialize.

2 A dialog called Create Selected Solution appears. The default 1
initializes the first solution for each operating point as the selected solution.
You can edit the solution number here if you want. For example if you
select 4, solution number 4 is initialized as the best solution for every

6-36

Optimization Output View

operating point. When you click OK, the toolbar buttons for the Selected
Solutions view and Select Solution are enabled.

3 Once you have enabled the Selected Solutions view, you can use the
table views (Solution Slice and Pareto Slice) and the plots in the graphs
(Objective Slice, Pareto Front, and Constraint Slice graphs) to help you
select best solution for each run.

a Click in the tables to select a point to display in the graphs until you can
decide which solution you want for a point.

b Click Select Solution () in the toolbar to select the current solution
as best.

Repeat until you have selected solutions for all points.

These solutions are saved in the Selected Solutions view. This view collects
all your selected solutions together in one place. For example, you might want
to select solution 7 for the first operating point, and solution 6 for the second,
and so on. You can then use your chosen optimization output for each point to

fill tables, or choose the Export to Data Set toolbar and Solution menu
option. See “Filling Tables From Optimization Results” on page 6-40.

An example of the Selected Solutions view is shown. It looks similar to the
Solution Slice view, except the solution controls at the top are not enabled.
You cannot change solution number here. The solution chosen as best (in
the other views) for the currently selected operating point is displayed in
the grayed out edit box.

6-37

6 Optimization

Objective Slice Graphs
The objective slice graphs are displayed by default for optimization output

views, or you can select in the toolbar.

The objective slice graphs show the objective functions at the run selected in
the table, with the solution value in orange. Whether the table is displaying

6-38

Optimization Output View

a solution slice or pareto slice, the cell you select in the table is always
displayed in the graphs.

The yellow areas show a region outside a constraint (such as a boundary
constraint model exported from the Model Browser part of the Model-Based
Calibration Toolbox, or any other optimization constraint). All constraint
regions in optimization displays (as in the rest of the toolbox) are shown in
yellow.

Pareto Front Graphs
The Pareto Front Graphs (click) are for multiobjective optimization where
there is more than one solution at each point. The Pareto Front graphs
show the available solutions for the selected run with the current selection
highlighted in red. Click in the tables or graphs to select solutions. The
selected solution is displayed in all other graphs (objective and constraint).

Note that before you run an NBI optimization you can specify how many
solutions you want the optimization to find, using the Set Up and Run
Optimization toolbar button.

You can use the Pareto Front graphs in combination with the table views
(Solution Slice and Pareto Slice) and the other plots in the graphs (Objective

6-39

6 Optimization

Slice and Constraint Slice graphs) to help you select best solutions for each
run. You can collect these solutions together in the “Selected Solution Slice”
on page 6-36.

Constraint Slice Graphs
The Constraint Slice graphs (click) show the constraint functions at the
selected operating point with the solution value in orange. Click in the tables
to select solutions to display. Yellow areas show a region outside a constraint.

Constraint Summary Table
The Constraint Summary Table (click) view displays the distance to each
constraint edge for the selected solution in the table — this can be useful
to see at a glance if a solution met all the constraints. If there are many
constraints it can be time-consuming to use the constraint graphs to verify
this. If you are using equality constraints the graphs can be entirely yellow
(as there is only a solution at a single point) and you can only see whether a
feasible solution has been found by looking at the Constraint Summary Table.

Filling Tables From Optimization Results
There are two methods for filling tables with optimization results.

1 At the Optimization_Output node, select Solution > Fill Tables or click

the toolbar button .

The Table Filling wizard appears.

2 Select the tables to fill and click the button to add them to the list of tables
to be filled. Click Next.

3 For each table to be filled, select the correct variable or model output
from the list of optimization results and click the button to match them,
as shown in this example.

6-40

Optimization Output View

In a single objective optimization there is only one solution for each
operating point so by default you will fill the table with solution 1. In a
multiobjective optimization there is more than one solution per point.
You can select a solution number to use for every point, or you can select
the other radio button to use your Selected Solution for each point. To
collect your preferred solutions you must first use the “Selected Solution
Slice” on page 6-36.

4 Select a Fill Method.

• Extrapolate Fill — uses the optimization results to fill the whole
table by extrapolation.

• Direct Fill — fills only those table cells whose breakpoints exactly
match the optimization points

• Custom Fill — you can write your own table filling algorithm and
use the file browser to select it. See “Custom Fill Function Structure”
on page 6-43.

6-41

6 Optimization

5 Exclude infeasible solutions — select this check box to include only
optimization results that meet the constraints. This does not depend on the
exit status of the optimization (exit flag), only a check to see if constraints
are met. To view the exit flag and algorithm termination messages check
the Solution Information pane in the Optimization Output view.

6 Add to extrapolation mask— when this check box is selected, filled table
cells are added to the mask only if their breakpoints exactly match points
that have been run in the optimization.

If you use the wizard to repeatedly fill a table any existing extrapolation
mask is added to. As an example, consider filling multiple zones of a table
using results from different optimizations. All zones are cumulatively
added to the mask. If there is overlap with previous fills cells are
overwritten unless they are locked. Note that locked cells are never altered
by table filling.

7 Click Finish to fill the tables.

You will see a dialog reporting successful table filling. Switch to the Tables
view to examine the tables.

The other method of filling tables with optimization output uses Data Sets.

1 From the Optimization_Output optimization output node, click Export to

Data Set () in the toolbar (or select Solution > Export to Data Set)

2 Go to the Data Sets view (click the Data Sets button in the Data Objects
pane) to see that the table of optimization results is contained in the
new data set. The new data set takes the name of the optimization and
the suffix identifies that which solution number you exported from the
optimization view.

You can now use this data set (or any optimization results) to fill tables, as
you can with any data set.

3 Select the data set and click (Fill Table From Data Set) in the toolbar.

4 Clear the check box to Show table history after fill.

6-42

Optimization Output View

5 Choose to fill a table with the desired optimization output by selecting them
in the two lists, then click the button Fill Table at the bottom right.

6 Right-click the display and select Surface to see the filled table surface
and the optimization output values.

See also

• “Tutorial: Filling Tables from Data” in the Getting Started documentation
for more details on using data sets to fill tables.

Custom Fill Function Structure
It can be useful to create your own function to fill tables from the results of an
optimization, for example to implement alternative fill methods, smoothing
strategies, or to customize output.

The input/output structure of a custom fill function resembles that of
the MATLAB interpolation routines INTERP1 and INTERP2. To see the
structure of the function it is best to look at an example:

1 Locate and open the file griddataTableFill.m in the mbctraining
directory.

2 Type the following at the command line to open the example:

edit griddataTableFill

There are instructions for using this example in the optimization tutorial,
“Using a Custom Fill Routine to Fill Tables”, in the Getting Started
documentation. This function is an example of a function that will fill 2-D
tables from optimization results.

All 2-D custom fill functions must take the following six inputs, which will be
supplied to it by CAGE when the function is called:

Input Description

col Column coordinate of optimization results
(NF-by-1)

6-43

6 Optimization

Input Description

row Row coordinate of optimization results
(NF-by-1)

filldata Optimized results at (row, col) points
(NF-by-1)

colaxis Column breakpoints of table to be filled
(1-by-NCOL)

rowaxis Row breakpoints of table to be filled
(NROW-by-1)

currtabdata Existing table values of table to be filled
(NROW-by-NCOL)

The function must pass three output arguments back to CAGE, to allow
CAGE to fill the table:

Output Description

ok Boolean flag to indicate success of the table
fill (TRUE or FALSE)

tabval New table values of table to be filled
(NROW-by-NCOL)

fillmask Logical matrix to indicate cells to be added
to the extrapolation mask as a consequence
of the table being filled (NROW-by-NCOL)

In the above specifications:

• NF is the number of points from the optimization results that will be used
to fill your tables

• NCOL is the number of column breakpoints in the table

• NROW is the number of row breakpoints in the table

Note that your function should handle the cases when the table fill is
successful or not. In griddataTableFill, this is handled using the try-catch

6-44

Optimization Output View

construct around the call to griddata. If griddata should fail, then the ok
flag is set to false and the function returns.

Custom Fill Function for 1–D Tables
You can also write custom fill functions to fill 1–D tables. In this case the
input and output specifications are as follows:

Input Description

row Row coordinate of optimization results (NF-by-1)

filldata Optimized results at (row, col) points (NF-by-1)

rowaxis Row breakpoints of table to be filled (NROW-by-1)

currtabdata Existing table values of table to be filled (NROW-by-1)

Output Description

ok Boolean flag to indicate success of the table fill (TRUE or
FALSE)

tabval New table values of table to be filled (NROW-by-1)

fillmask Logical matrix to indicate cells to be added to the
extrapolation mask as a consequence of the table being
filled (NROW-by-1)

6-45

6 Optimization

Automated Tradeoff
You can use automated tradeoff to run an optimization routine and fill your
tradeoff tables. Once you have set up an optimization and a tradeoff, you can
run an automated tradeoff. As with any other tradeoff you need at least one
table. You can apply an optimization to a cell or region of a tradeoff table, or
the whole table, and the tradeoff values found are used to fill the selected cells.
If only filling selected cells you can then fill the entire table by extrapolation.

There is an example automated tradeoff in the optimization tutorial chapter,
“Tutorial: Optimization and Automated Tradeoff” in the Getting Started
documentation.

Using Automated Tradeoff

1 You need a CAGE session with some models and a tradeoff containing
some tables.

• See Chapter 5, “Tradeoff Calibrations” for instructions on setting up
a tradeoff. You could use the tradeoff tutorial to generate a suitable
example session.

You also need to set up an optimization before you can run an automated
tradeoff. Objectives and constraints must be set up.

• For an example work through the step-by-step tutorial to set up
some optimizations and then apply them to a tradeoff table. See
“Tutorial: Optimization and Automated Tradeoff” in the Getting Started
documentation.

2 Go to the tradeoff table you want to automate. You can select some table
cells to apply the optimization to, or use the whole table, or fill only
previously saved tradeoff points. Note that if you define a large region
with many cells or a whole table it can take a long time to complete the
optimization. You can select individual cells, or click and drag to select
a rectangle of cells. The selected cells do not have to be adjacent. Try a
small region (say up to six cells) to begin with. Right-click selected cells
and select Extrapolation Regions -> Add Selection or use the toolbar
button (to add selection to extrapolation regions).

6-46

Automated Tradeoff

3 To apply optimization: click in the toolbar, or select Inputs ->
Automated Tradeoff.

• A dialog appears that allows an appropriate (defined below) optimization
to be selected from the current project.

Note You must set up an optimization to run before you can perform an
automated tradeoff. You do this in the Optimization view. See also
“Setting Up Optimizations” on page 6-4.

The set of cells in the region you have selected becomes the operating point
set for the optimization. The cell/region breakpoint values are used to
replace the fixed variable values in the selected optimization. Note that the
existing fixed variable values are reset to their previous state at the end
of the automated tradeoff.

If previous tradeoff values have been applied to a cell, those values are
used for free variable initial values and non-table-axis fixed variables;
otherwise the set points are used.

4 The optimization is run as if you were clicking Run from the Optimization
view. See “Running Optimizations” on page 6-22.

Results are placed in the tradeoff object, that is, values for the tables
involving the free variables or values for the tables for constraint or
objective models. If the routine applied gives more than one solution, for
example, an NBI optimization, then a solution which tries to trade off all
objectives is placed in the tradeoff tables. Every cell in the defined region
is filled.

5 The cells of the region become part of the extrapolation mask (as if apply
point has been applied); so if you want you can then click Extrapolate in the
toolbar to fill the rest of the table from your optimized automated tradeoff.

6-47

6 Optimization

What Are Appropriate Optimizations?
The list of all optimizations in the project is filtered. To be eligible for selection,

• The optimization must be ready to run (toolbar button enabled).

• The variables in the axes of the tradeoff tables must not be free variables
in the optimization. For example, if one of the axes is speed, then speed
cannot be a free variable.

• The fixed variables must be a subset of the variables in the axes of the
tradeoff tables. For example, if the optimization requires variables Speed
and Load, then these must be the axes variables in the tradeoff table.

• The optimization must either have N runs with all variables of length 1, or
a single run with all variables of length N.

Multimodel Tradeoff
For a multimodel tradeoff, things work slightly differently. The multimodel is
only defined for certain cells in the tradeoff tables. These are the operating
points that were modeled using the Model Browser part of the toolbox. Such

6-48

Automated Tradeoff

cells are marked with a model icon as shown in the example, and you should
select these for running the automated tradeoff. You can select any region,
but the optimization can only find values for the operating points defined by
the multimodel.

6-49

6 Optimization

User-Defined Optimization
User-defined optimizations are described in the following sections:

• “Implementing Your Optimization Algorithm in CAGE” on page 6-50
describes how to customize the optimization template to use your
optimization routines in CAGE.

• There is a step-by-step guide to using the example provided to help you
understand how to modify the template file to use your own optimization
functions. See the optimization tutorial section“Worked Example
Optimization” in the Getting Started documentation.

In many cases the standard routines supplied for constrained single and
multiobjective optimization (foptcon and NBI) are sufficient to allow you to
solve your optimization problem. Sometimes, however, you need to write a
customized optimization algorithm. This can be useful in many situations,
for example,

• For an expert to capture an optimization process to solve a particular
problem, for example, determination of optimal spark angle and exhaust
gas recirculation rate on a port-fuel injection engine

• To implement an alternative optimization algorithm to those supplied

• To implement a complex constraint or objective that is only possible
through writing M-code

• To produce custom output graphics

User-defined optimization functions in CAGE allow advanced users to write
their own optimization routines that can access current CAGE data. In order
to access the user function from CAGE, you must register the M-file with
CAGE and place it on the MATLAB path. It is crucial that this function
conforms to the template specified. The following sections describe this
process.

Implementing Your Optimization Algorithm in CAGE
At some point a CAGE optimization function calls on an algorithm to optimize
the objective functions over the free variables. You can implement the
algorithm in the CAGE optimization function as an external M-file. Use

6-50

User-Defined Optimization

the template file as a basis for your optimization function. The best way to
understand how to alter the template file to implement your own optimization
algorithms is to compare it with the worked example, as described in the
optimization tutorial.

• See the following optimization tutorial sections in the Getting Started
documentation:

- “Worked Example Optimization” describes the process of using the
worked example

- “Creating an Optimization from Your Own Algorithm” describes in detail
the steps necessary to use an example optimization algorithm in CAGE

• “About the Worked Example Optimization Algorithm” on page 6-53

examines the coding involved in implementing an external optimizer in a
CAGE optimization M-file

• “Checking User-Defined Optimizations into CAGE” on page 6-55 explains
how to check in your optimization function so you can use it in CAGE

Optimization Function Structure
The optimization function M-files have two sections. To compare these
sections in the worked example with the template file on which it is based:

1 Locate and open the file mbcOStemplate in the mbctraining directory

2 Type the following at the command line to open the example:

edit mbcOSworkedexample

The two sections are the Options section and Evaluate section.

1 The Options function section contains the settings that define your
optimization. Here you can set up these attributes:

• Name

• Description

• Free variables

• Objective functions

6-51

6 Optimization

• Constraints

• Helper data sets

• Optimization parameters
CAGE interacts with the cgoptimoptions object, where all these settings
are stored.

See “Methods of cgoptimoptions” on page 6-57 for information about setting
up the options section.

If you leave the cgoptimoptions function unchanged, your optimization
function must be able to support the default options. That is, your
optimization will have:

• One objective

• Any number of constraints (selected by the user in CAGE)

2 The Evaluate function section contains your optimization routine. CAGE
calls this section when the Run button is clicked.

Place your optimization routine under this section, interacting with CAGE
(obtaining inputs and sending outputs) via the cgoptimstore object. Your
optimization must conform to the following syntax:

optimstore = <Your_Optimization> (optimstore)

where <Your_Optimization> is the name of your optimization function.

Any subfunctions called by your optimization routine should also be placed
at the bottom of this section.

See “Methods of cgoptimstore” on page 6-59.

Note Be careful not to overwrite the worked example and template files when
you are trying them out — save them under a new name when you make
changes.

6-52

User-Defined Optimization

There is a step-by-step guide describing how to modify the template using
the worked example optimization function in the optimization tutorial. See
“Worked Example Optimization” in the Getting Started documentation.

About the Worked Example Optimization Algorithm
mbcweoptimizer is an example of a user-specified optimization that solves
the following problem:

max TQ over (AFR, SPK).

• [bestafr, bestspk] = mbcweoptimizer(TQ) finds a maximum
(bestafr, bestspk) to the function TQ.

TQ must be a function (or a function handle) that depends on [AFR, SPK,
any other variables] only. The function must depend on the variables in
that order. This routine does no variable matching.

• [bestafr, bestspk]=mbcweoptimizer(TQ, afrrng, spkrng) finds a
maximum (bestafr,bestspk) to the function TQ.

afrrng and spkrng are 1-by-2 row vectors containing search ranges for
those variables.

• [bestafr, bestspk]=mbcweoptimizer(TQ, afrrng, spkrng, res) finds
a maximum (bestafr,bestspk) to the function TQ.

This optimization is performed over a res-by-res grid of (AFR, SPK) values.
If res is not specified, the default grid resolution is 25.

• [bestafr, bestspk]=mbcweoptimizer(TQ, afrrng, spkrng, res,
optimstore) finds a maximum (bestafr,bestspk) to the function TQ within
a CAGE optimization function.

optimstore is passed to this function when it is called from the Evaluate
section subroutine of your optimization function. In this case, TQ must be a
function handle that takes the inputs AFR, SPK, and OPTIMSTORE, in that
order. Any other inputs for the TQ model will be set by CAGE.

• [bestafr, bestspk] = mbcweoptimizer(TQ, afrrng, spkrng, res,
optimstore, P1, P2, ...) passes extra scalar arguments (in order) to
the torque model when it is evaluated. In this case, the optimstore input
is ignored.

6-53

6 Optimization

The Structure of the Worked Example
The best way to understand how to implement an external optimizer in a
CAGE optimization function is to study the details of the example.

• To view the whole worked example M-file, at the command line, type

edit mbcOSworkedexample

The following code section is taken from the Evaluate section of the worked
example file as an example.

The code fragment above is in the i_Evaluate subfunction. This subfunction
is called once for each run of the script. The line of code labeled A above calls
the worked example optimization algorithm external to the optimization
function. As with functions in the Optimization Toolbox, the first argument to
the call to the optimizer is a function handle that evaluates the objectives at a
given input point. We recommend you place the function pointed at by the
function handle in the optimization file. If you do not place them in the same
file you must make sure the evaluate function M-file is on the MATLAB path.
As an example, the optimization evaluation function in the worked example
optimization is shown in the code fragment following.

6-54

User-Defined Optimization

The first two inputs to this function are the torque (in this case) model
inputs. The final input is the optimstore object, where information about
the optimization is stored. To evaluate the objective, the evaluate method
from the optimstore object is used. In the above example, the line of code
referenced by B evaluates the torque model in the worked example at the
(afr, spk) input points. The values of (N, L) at the current run are used in the
evaluation of the torque model. CAGE retrieves these values from optimstore
when the torque model is evaluated.

The two subfunctions presented above are an example of how to implement an
external optimizer in a CAGE optimization M-file.

See also the optimization tutorial section“Creating an Optimization from
Your Own Algorithm” in the Getting Started documentation, which describes
in detail the steps involved in incorporating an example algorithm into a
CAGE optimization M-file.

Checking User-Defined Optimizations into CAGE
When you have modified the template to create your own optimization
function, you must check it into the Model-Based Calibration Toolbox in order
to use the function in CAGE. Once you have checked in your optimization
function it appears in the Optimization Wizard. See “Optimization Wizard”
on page 6-4.

To check a user-defined optimization into CAGE,

1 Select File -> Preferences.

2 Click the Optimization tab and click Add... to browse to your M-file.
Select the file and click Open. This registers the optimization function with
CAGE. You need to do this when you customize your own optimizations.

6-55

6 Optimization

The example shows the worked example function, which is already
registered with CAGE for use in the optimization tutorial.

3 You can click Test to check that the optimization function is correctly
set up. This is a very useful function when you use your own functions;
if anything is incorrectly set up the test results tell you where to start
correcting your function.

You can see an example of this by saving a copy of the worked example file
and changing one of the variable names (such as afr) to a number. Try to
check this altered function into CAGE and the Test button will return an
informative error specifying the line you have altered.

4 Click OK to dismiss the CAGE Preferences dialog and return to the
CAGE browser.

Registered optimizations appear in the Optimization Wizard when you
set up a new optimization.

6-56

Optimization Function Reference

Optimization Function Reference
Following are the reference pages for all the functions you can use in
user-defined optimizations. See the following tables for a list of available
functions by category:

• “Methods of cgoptimoptions” on page 6-57

• “Methods of cgoptimstore” on page 6-59

Methods of cgoptimoptions
You use these functions to set up all your optimization settings in the Options
section of the file. You can set up any or all of these seven attributes:

• Name

• Description

• Free variables

• Objective functions

• Constraints

• Helper data sets

• Optimization parameters

The following methods are available:

addFreeVariable Add a free variable to the
optimization

addLinearConstraint Add a linear constraint to the
optimization

addModelConstraint Add a model constraint to the
optimization

addObjective Add an objective to the optimization

addOperatingPointSet Add an operating point set to the
optimization

addParameter Add a parameter to the optimization

6-57

6 Optimization

getConstraints Return information about all
optimization constraints

getConstraintsMode Return the current usage of
constraints

getDescription Get the current description for the
optimization function

getEnabled Get the current enabled status for
the optimization

getFreeVariables Return the optimization free variable
labels

getFreeVariablesMode Return the current usage of free
variables

getLinearConstraints Get linear constraint placeholder
information

getModelConstraints Get model constraint placeholder
information

getName Get the current name label for the
optimization function

getNonlcon Get nonlinear constraint information

getObjectives Return information about the
optimization objectives

getObjectivesMode Return the current usage of objective
functions

getOperatingPointSets Return information about the
optimization operating point sets

getOperatingPointsMode Return the current usage of
operating point sets

getParameters Return information about the
optimization parameters

getRunInterfaceVersion Get the preferred interface to provide
the evaluation function

6-58

Optimization Function Reference

removeConstraint Remove a constraint from the
optimization

removeFreeVariable Remove a free variable from the
optimization

removeObjective Remove an objective from the
optimization

removeOperatingPointSet Remove an operating point set from
the optimization

removeParameter Remove a parameter from the
optimization

setConstraintsMode Set how the optimization constraints
are to be used

setDescription Provide a description for the
optimization function

setEnabled Set the enabled status for this
optimization function

setFreeVariablesMode Set how the optimization free
variables are used

setName Provide a name label for an
optimization function

setObjectivesMode Set how the optimization objective
functions are used

setOperatingPointsMode Set how the optimization operating
point sets are used

setRunInterfaceVersion Get the preferred interface to provide
the evaluation function

Methods of cgoptimstore
The following methods are available:

6-59

6 Optimization

evaluate Evaluate optimization objectives and
constraints

evaluateNonlcon Evaluate optimization nonlinear
constraints

evaluateObjective Evaluate optimization objectives

get Get optimization properties

getA Get the linear inequality constraint
matrix.

getB Get the linear inequality constraint
target values.

getDataset Retrieve data from a data set

getFreeVariables Get the optimal values of the free
variables

getInitFreeVal Get the initial free values for the
optimization

getLB Get the free variable lower bounds

getLcon Return the linear constraint labels

getNumNonlcon Return the number of nonlinear
constraints per label

getNumNonlconLabels Return the number of nonlinear
constraint labels

getNumObjectiveLabels Return the number of objective
labels

getNumObjectives Return the number of objectives per
label

getNumRowsInDataset Get the number of rows in an
optimization data set

getObjectives Return the objective labels for the
optimization

getObjectiveType Return the objective type

6-60

Optimization Function Reference

getOptimOptions Retrieve the optimization options
object

getOutputInfo Get output information for the
optimization

getParam Get optimization parameter

getStopState Current stop state for optimization

getUB Get the free variable upper bounds

gridEvaluate Grid evaluation of optimization
objectives and constraints

gridPevEvaluate Grid evaluation of prediction error
variance (PEV)

isScalarFreeVariables Return whether all the free variables
are scalars

nEvaluate Natural evaluation of optimization
objectives and constraints

nEvaluateNonlcon Natural evaluation of optimization
nonlinear constraints

nEvaluateObjective Natural evaluation of optimization
objectives

optimset Create/alter optimization OPTIONS
structure

pevEvaluate Evaluate prediction error variance
(PEV)

setExitStatus Set exit status information for the
optimization

setFreeVariables Set the optimal values of the free
variables

setOutput Set diagnostic information for the
optimization

6-61

6 Optimization

setOutputInfo Set output information for the
optimization

setStopState Set current stop state for
optimization

6-62

Functions — Alphabetical List

Functions — Alphabetical List
addFreeVariable
addLinearConstraint
addModelConstraint
addObjective
addOperatingPointSet
addParameter
evaluate
evaluateNonlcon
evaluateObjective
get
getA
getB
getConstraints
getConstraintsMode
getDataset
getDescription
getEnabled
getFreeVariables
getFreeVariables
getFreeVariablesMode
getInitFreeVal
getLB
getLcon
getLinearConstraints
getModelConstraints
getName
getNonlcon
getNumNonlcon
getNumNonlconLabels
getNumObjectiveLabels
getNumObjectives
getNumRowsInDataset
getObjectives
getObjectives
getObjectivesMode

6-63

6 Optimization

getObjectiveType
getOperatingPointSets
getOperatingPointsMode
getOptimOptions
getOutputInfo
getParam
getParameters
getRunInterfaceVersion
getStopState
getUB
gridEvaluate
gridPevEvaluate
isScalarFreeVariables
nEvaluate
nEvaluateNonlcon
nEvaluateObjective
optimset
pevEvaluate
removeConstraint
removeFreeVariable
removeObjective
removeOperatingPointSet
removeParameter
setConstraintsMode
setDescription
setEnabled
setExitStatus
setFreeVariables
setFreeVariablesMode
setName
setObjectivesMode
setOperatingPointsMode
setOutput
setOutputInfo
setRunInterfaceVersion
setStopState

6-64

addModelConstraint

Purpose Add a model constraint to the optimization

Syntax options=addModelConstraint(options, label, boundtype, bound)

Description A method of cgoptimoptions. Adds a placeholder for a model constraint
to the optimization. The string label is used to refer to the constraint
in CAGE.

boundtype can be set either to the string ’greaterthan' or ’lessthan'.

bound must be a scalar real.

If boundtype = ’greaterthan’, the model constraint takes the following
form:

CAGE model >= bound

Similarly, if boundtype = ’lessthan’, the model constraint takes the
form

CAGE model <= bound

Examples An optimization requires a constraint where a user-defined function
must be less than 500. The following code line adds a placeholder for
this constraint that is labeled ’mycon’:

opt = addModelConstraint(opt, 'mycon', 'lessthan', 500);

See Also getModelConstraints, addLinearConstraint, setConstraintsMode,
removeConstraint

6-65

addLinearConstraint

Purpose Add a linear constraint to the optimization

Syntax options = addLinearConstraint(options, label, A, B)

Description A method of cgoptimoptions. Adds a placeholder for a linear constraint
to the optimization. The string label is used to refer to the constraint
in the CAGE GUI. Linear constraints can be written in the form

A(1)X(1) + A(2)X(2) + ... + A(n)X(n) <= b

where X(i) is the ith free variable, A is a vector of coefficients, and
b is a scalar bound.

Examples % Add SPK and EGR variables to an optimization
opt = addFreeVariable(opt, 'SPK');
opt = addFreeVariable(opt, 'EGR');
% Add a linear constraint such that 3*SPK - 2*EGR <= 30
opt = addLinearConstraint(opt, 'newCon', [3 -2], 30);

See Also getLinearConstraints, addModelConstraint, setConstraintsMode,
removeConstraint

6-66

addFreeVariable

Purpose Add a free variable to the optimization

Syntax options = addfreeVariable (options, label)

Description A method of cgoptimoptions. Adds a placeholder for a free variable to
the optimization. The string label is used to refer to the variable in
CAGE.

See Also setFreeVariablesMode, getFreeVariablesMode, getFreeVariables,
removeFreeVariable

6-67

addObjective

Purpose Add an objective to the optimization

Syntax options = addObjective(options, label, typestr)

Description A method of cgoptimoptions. Adds a placeholder for an objective
function to the optimization. The string label is used to refer to the
constraint in CAGE.

typestr can take one of four values, ’max’, ’min’, ’min/max’, or ’helper’.

Examples opt = addObjective(opt, 'newObj', 'max')

Adds an objective function labeled newObj to the optimization and
indicates that it is to be maximized.

opt = addObjective(opt, 'newObj', 'min/max')

Adds an objective function labeled newObj to the optimization and
indicates that the user should be allowed to choose whether it is
minimized or maximized from CAGE.

opt = addObjective(opt, 'newObj2', 'helper')

Adds an objective function labeled newObj2 to the optimization. The
string ’helper’ indicates that the function is used as part of the
determination of the cost function but is not directly minimized or
maximized.

See Also getObjectives, setObjectivesMode, getObjectivesMode,
removeObjective

6-68

addOperatingPointSet

Purpose Add an operating point set to the optimization

Syntax options = addOperatingPointSet(options, label, vars)

Description A method of cgoptimoptions. Adds a placeholder for an additional
operating point set to the optimization.

The string label is used to refer to the constraint in CAGE. vars is a
(1-by-N) cell array of strings where N >= 1. Each element of vars is
a label for a CAGE variable that must appear in the operating point
set that the user chooses.

See Also getOperatingPointSets, setOperatingPointsMode,
getOperatingPointsMode, removeOperatingPointSet

6-69

addParameter

Purpose Add a parameter to the optimization

Syntax options = addParameter(options, label, typestr, value)

Description A method of cgoptimoptions. Adds a parameter to the optimization.
The string label is used to refer to the parameter. The string typestr
takes one of ’number’, ’list’, or ’boolean’. A default value for the
parameter must be supplied in value. The form of value must be one
of the following:

typestr Value

'number' Scalar, real number

'list' Cell array of strings, one for each
list member

'boolean' True or false

options = addParameter(options, label, typestr, value,
displayName) allows a more descriptive label to be used for the
parameter in the CAGE Optimization Parameters GUI. Note that you
still must refer to the parameter by label in the ’Evaluate’ section of
your script.

See Also getParameters, getParam, removeParameter

6-70

getModelConstraints

Purpose Get model constraint placeholder information

Syntax out = getModelConstraints (options)

Description A method of cgoptimoptions. Returns a structure array of information
regarding the model constraints in the optimization. The structure
has three fields: label, boundtype, and bound. See the help for
addModelConstraint for more information on these fields.

See Also addModelConstraint, setConstraintsMode

6-71

getLinearConstraints

Purpose Get linear constraint placeholder information

Syntax out = getLinearConstraints(options)

Description A method of cgoptimoptions. Returns a structure array of information
regarding the linear constraints in the optimization. The structure has
three fields: label, A, and b. See the help for addLinearConstraint for
more information on these fields.

See Also addLinearConstraint, setConstraintsMode

6-72

getConstraintsMode

Purpose Return the current usage of constraints

Syntax mode = getConstraintsMode(options)

Description Returns a string describing how the optimization makes constraints
available to the user. mode will be one of ‘any' or ‘fixed'.

See Also setConstraintsMode

6-73

getDescription

Purpose Get the current description for the optimization function

Syntax desc = getDescription(options)

Description A method of cgoptimoptions. Returns the description, desc, of the
user-defined optimization function.

See Also setDescription

6-74

getEnabled

Purpose Get the current enabled status for the optimization

Syntax en=getEnabled(options)

Description A method of cgoptimoptions. Returns whether this user-defined
optimization is available to be run. en is set to true or false. When an
optimization is disabled, the user can still register it with CAGE but is
not allowed to create new optimizations using it.

See Also setEnabled

6-75

getFreeVariables

Purpose Return the optimization free variable labels

Syntax labels=getFreeVariables(options)

Description A method of cgoptimoptions. Returns the current placeholder labels
for the free variables in the optimization. The labels are returned in a
(1-by-NFreeVar) cell array, labels, where NFreeVar is the number of
free variables that have been added to the optimization.

See Also addFreeVariable, setFreeVariablesMode, getFreeVariablesMode

6-76

getFreeVariablesMode

Purpose Return the current usage of free variables

Syntax mode= getFreeVariablesMode(options)

Description A method of cgoptimoptions. Returns a string describing how the
optimization makes free variables available to the user. mode is set
to any or fixed.

See Also setFreeVariablesMode

6-77

getName

Purpose Get the current name label for the optimization function

Syntax name=getName(options)

Description A method of cgoptimoptions. Returns the current name label, name,
for the user-defined optimization function.

See Also setName

6-78

getObjectives

Purpose Return information about the optimization objectives

Syntax objinfo=getObjectives(options)

Description A method of cgoptimoptions. Returns a structure array of information
regarding the optimization objective functions. objinfo(i).label
contains the label for the ith objective. A string defining the type
of the ith objective (max, min, min/max, or helper) is stored in
objinfo(i).type.

See Also addObjective, setObjectivesMode, getObjectivesMode

6-79

getObjectivesMode

Purpose Return the current usage of objective functions

Syntax mode = getObjectivesMode(options)

Description A method of cgoptimoptions. Returns a string describing how the
optimization makes objectives available to the user. mode will be one
of ‘multiple', ‘any’, or ‘fixed'.

See Also setObjectivesMode

6-80

getOperatingPointSets

Purpose Return information about the optimization operating point sets

Syntax getOperatingPointSets(options)

Description A method of cgoptimoptions. Returns a structure array of information
regarding the optimization operating point sets. The structure has two
fields, label and vars. See the help for addOperatingPointSet for
more information on these fields.

See Also addOperatingPointSet, setOperatingPointsMode,
getOperatingPointsMode

6-81

getOperatingPointsMode

Purpose Return the current usage of operating point sets

Syntax mode=getOperatingPointsMode(options)

Description A method of cgoptimoptions. Returns a string describing how the
optimization makes operating point sets available to the user. mode will
be one of ‘default', ‘fixed', or ‘any'.

See Also setOperatingPointsMode

6-82

getParameters

Purpose Return information about the optimization parameters

Syntax getParameters(options)

Description A method of cgoptimoptions. Returns a structure array containing
information about the parameters that are defined for the optimization.
Parameter information is returned in a structure with fields label,
typestr, value, and displayname. See the help for addParameter for
more information on these fields.

See Also addParameter, getParam

6-83

setConstraintsMode

Purpose Set how the optimization constraints are to be used

Syntax options=setConstraintsMode(options, modestr)

Description A method of cgoptimoptions. Sets the mode that governs how the user
can set up constraints for the optimization in CAGE.

When modestr = any, the user can add any number of constraints.

When modestr = fixed, the user can only edit the constraints that are
added by the user-defined optimization function.

See Also getConstraintsMode, addModelConstraint, addLinearConstraint

6-84

setDescription

Purpose Provide a description for the optimization function

Syntax options=setDescription(options, desc)

Description A method of cgoptimoptions. Sets the description for the optimization
object to be the string desc.

See Also getDescription

6-85

setEnabled

Purpose Set the enabled status for this optimization function

Syntax options = setEnabled(options, status)

Description A method of cgoptimoptions. Sets the optimization function enabled
status. status must be true or false. When an optimization is disabled,
you can still register it with CAGE but are not allowed to create new
optimizations using it.

See Also getEnabled

6-86

setFreeVariablesMode

Purpose Set how the optimization free variables are used

Syntax options = setFreeVariablesMode(options, modestr)

Description A method of cgoptimoptions. Sets the mode that governs how the user
is allowed to set up free variables for the optimization in the CAGE GUI.

When modestr = 'any', the user is allowed to add any number of
free variables.

When modestr = 'fixed', the user is only allowed to use the number of
free variables that are added by the user-defined optimization function.

See Also getFreeVariablesMode, addFreeVariable

6-87

setName

Purpose Provide a name label for an optimization function

Syntax options = setName(options, name)

Description A method of cgoptimoptions. Sets the name label for the optimization
object to be the string name.

See Also getName

6-88

setObjectivesMode

Purpose Set how the optimization objective functions are used

Syntax options = setObjectivesMode(options, modestr)

Description A method of cgoptimoptions. Sets the mode that governs whether the
user is allowed to set up objectives for the optimization in the CAGE
GUI.

When modestr = 'any', the user is allowed to add any number of
objectives.

When modestr = 'fixed', the user is only allowed to edit the objectives
that are added by the user-defined optimization function.

When modestr = 'multiple', the user is only allowed to run the
optimization if he or she has defined two or more objectives.

See Also getObjectivesMode, addObjective

6-89

setOperatingPointsMode

Purpose Set how the optimization operating point sets are used

Syntax options = setOperatingPointsMode(options, modestr)

Description A method of cgoptimoptions. Sets the mode that governs how the user
is allowed to set up operating point sets for the optimization in CAGE.

When modestr = 'any', the user is allowed to add any number of
operating point sets.

When modestr = 'default', the user is allowed to optionally define a
single operating point set to run the optimization over.

When modestr = 'fixed', the number of operating point sets required
can be fixed by the optimization function and the user is not allowed to
add or remove any using the CAGE GUI.

See Also getOperatingPointsMode, addOperatingPointSet

6-90

getConstraints

Purpose Return information about all optimization constraints

Syntax coninfo = getConstraints(obj)

Description Return information about all optimization constraints. A method of
cgoptimoptions.

coninfo = getConstraints(options) returns a structure array
of information regarding the optimization constraint functions.
coninfo(i).label contains the label for the i-th constraint. A string
defining the type of the i-th constraint is stored in coninfo(i).typestr.
The constraint parameters are stored in coninfo(i).pars.

See Also addModelConstraint, addLinearConstraint

6-91

getNonlcon

Purpose Get nonlinear constraint information

Syntax out = getNonlCon(obj)

Description Get nonlinear constraint information. A method of cgoptimoptions.

out = getNonlinearConstraints(options) returns a structure array
of information regarding the nonlinear constraints in the optimization.
The structure has three fields: label, type and pars. The label
field contains the label used for the constraint in the CAGE GUI. The
typestr field contains constraint type selected by the user. The pars
field contains any parameters associated with the constraint.

See Also getModelConstraints, getLinearConstraints

6-92

getRunInterfaceVersion

Purpose Get the preferred interface to provide the evaluation function

Syntax ver = getRunInterfaceVersion(obj)

Description Get the preferred interface to provide the evaluation function. A method
of cgoptimoptions.

ver = getRunInterfaceVersion(options) returns the Model-Based
Calibration Toolbox Version that will be emulated when the optimization
function’s evaluate option is called. If ver is set to 2, the interface
provided by the Model-Based Calibration Toolbox Version 2 will be
activated. If ver is set to 3, the new interface that the Model-Based
Calibration Toolbox Version 3 defines will be used.

See Also setRunInterfaceVersion

6-93

removeConstraint

Purpose Remove a constraint from the optimization

Syntax obj = removeConstraint(obj, sLabel)

Description Remove a constraint from the optimization. A method of
cgoptimoptions.

obj = removeConstraint(options, label) removes the placeholder
for the constraint referred to by the string label.

See Also getModelConstraints, getLinearConstraints, addModelConstraint,
addLinearConstraint

6-94

removeFreeVariable

Purpose Remove a free variable from the optimization

Syntax obj = removeFreeVariable(obj, sLabel)

Description Remove a free variable from the optimization. A method of
cgoptimoptions.

options = removeFreeVariable(options, label) removes the
placeholder for the free variable referred to by the string label.

See Also getFreeVariables, addFreeVariable

6-95

removeObjective

Purpose Remove an objective from the optimization

Syntax obj = removeObjective(obj, sLabel)

Description Remove an objective from the optimization. A method of
cgoptimoptions.

options = removeObjective(options, label) removes the
placeholder for the objective referred to by the string label.

See Also getObjectives, addObjective

6-96

removeOperatingPointSet

Purpose Remove an operating point set from the optimization

Syntax obj = removeOperatingPointSet(obj, sLabel)

Description Remove an operating point set from the optimization. A method of
cgoptimoptions.

options = removeOperatingPointSet(options, label) removes the
placeholder for the operating point set referred to by the string label.

See Also getOperatingPointSets, addOperatingPointSet

6-97

removeParameter

Purpose Remove a parameter from the optimization

Syntax obj = removeParameter(obj, sLabel)

Description Remove a parameter from the optimization. A method of
cgoptimoptions.

Removes the placeholder for the parameter referred to by the string
label.

See Also getParameters, addParameter

6-98

setRunInterfaceVersion

Purpose Get the preferred interface to provide the evaluation function

Syntax obj = setRunInterfaceVersion(obj, ver)

Description Set the preferred interface to provide the evaluation function. A method
of cgoptimoptions.

Sets the Model-Based Calibration Toolbox Version that will be emulated
when the optimization function’s evaluate option is called. If ver is set
to 2, the interface provided by the Model-Based Calibration Toolbox
Version 2 will be activated. If ver is set to 3, the new interface that the
Model-Based Calibration Toolbox Version 3 defines will be used.

The interface version that the current version of Model-Based
Calibration Toolbox runs is superior in its capabilities, however it does
contains some backwards incompatibilities with the interface used in
version 2. You can use this function in old Model-Based Calibration
Toolbox optimization files that fail to work with the newer interface.

See Also getRunInterfaceVersion

6-99

evaluate

Purpose Evaluate optimization objectives and constraints

Syntax Y = evaluate(optimstore, X)

Description A method of cgoptimstore.

Evaluate optimization objectives and constraints.

Y = evaluate(optimstore, X) evaluates all of the optimization
objectives and constraints at the free variable values X. X is a
(NPoints-by-NFreeVar) matrix where NPoints is the number of points
to be evaluated and NFreeVar is the number of free variables in the
optimization.

Examples Y = evaluate(optimstore, X, itemnames)

evaluates the objectives and constraints specified in the cell array
of strings, itemnames, at the free variable values X. The values of
the objectives and constraints are returned in Y, which is of size
(NPoints-by-NItems) where NItems is the number of objectives and
constraints listed in itemnames. Note that the evaluation of Y is scaled
onto [-1 1].

Y = evaluate(optimstore, X, itemnames, datasetname)

evaluates the specified objectives and constraints at the operating
points in the data set specified by the string datasetname. X must be
a (Nrows-by-NfreeVar) matrix, where Nrows is the number of rows
in the data set.

Y = evaluate(optimstore, X, itemnames, datasetname, rowind)

evaluates the specified objectives and constraints at the points of
datasetname given by rowind. X must be a (NRows-by-NFreeVar)
matrix where NRows is the length of ROWIND. ROWIND must be
a list of integer indicies in the range [1 NumRowsInDataset]. Y is a
(Nrows-by-NItems) matrix.

6-100

evaluate

See Also nEvaluate, pevEvaluate

6-101

get

Purpose Get optimization properties

Syntax V = get(optimstore, 'PropertyName')

Description Returns the value of the specified property in the optimization. A
method of cgoptimstore.

get(optimstore) displays all property names and a description of each
property for the OPTIMSTORE object.

S = get(optimstore) returns a structure where each field name is
thename of a property of OPTIMSTORE and each field contains the
description of that property.

This method is obsolete. Please use the GETXXX methods instead.

See Also See also cgoptimstore/GETXXX, for example getA, getB, etc.

6-102

getDataset

Purpose Retrieve data from a data set

Syntax V = getDataset(optimstore, datasetName, inputNames)

Description Returns required data from a named data set. A method of
cgoptimstore.

PTS = getDataset(optimstore, datasetName) returns all the data
from the specified helper data set. If the data set cannot be found, data
is returned as empty.

PTS = getDataset(optimstore, datasetName, inputNames) returns
data from the specified helper data set. Data is retrieved for the
columns of the data set with names that match those in inputNames. If
the dataset cannot be found, data is returned as empty.

Examples V = getdataset(optimstore, 'myDS', {'speed', 'afr'})

returns a NPTS by 2 matrix, V.

NPTS is the number of rows in the operating point set labelled 'myDS',
V(:, 1) is the data for the variable labelled 'speed', V(:, 2) is the
data for the variable labelled 'afr'.

See Also addOperatingPointSet

6-103

getNumRowsInDataset

Purpose Get the number of rows in an optimization data set

Syntax npts = getNumrowsInDataset(optimstore, datasetName)

Description Returns the number of rows in the named data set. A method of
cgoptimstore.

6-104

gridEvaluate

Purpose Grid evaluation of optimization objectives and constraints

Syntax Y = gridEvaluate(optimstore, X)
Y = gridEvaluate(optimstore, X, objconname)
Y = gridEvaluate(optimstore, X, objconname, datasetname)
Y = gridEvaluate(optimstore, X, objconname, datasetname, rowind)

Description A method of cgoptimstore.

Y = gridEvaluate(optimstore, X) evaluates all the objectives and
constraints at the points X for the current run. This call produces
identical results to the equivalent call to cgoptimstore/evaluate.

Y = gridEvaluate(optimstore, X, objconname) evaluates the
objectives/constraints specified in the cell array objconname as
described above.

Y = gridEvaluate(optimstore, X, objconname, datasetname)
evaluates all the objectives and constraints at all combinations of
the points in datasetname with X. The return matrix, Y, is of size
SIZE(X,1)-by-(NOBJ+NCON)-by-NPTS, where NOBJ is the number
of objectives, NCON is the number of constraints and NPTS is the
number of rows in P. Further, Y(I, J, K) is the value of the J-th
objective/constraint at X(I, :) and P(K, :). Y is scaled on [-1 1].

Examples Objectives : O1, O2

Constraints : C1, C2

Primary data set:

A B

4 5

1 3

Free variables:

6-105

gridEvaluate

X1 X2 X3

2 4 8

1 9 3

6 2 7

X

In this case the following command

Y = gridEvaluate(optimstore, X)

evaluates objectives and constraints at the following points:

A B X1 X2 X3

4 5 2 4 8

4 5 1 9 3

4 5 6 2 7

1 3 2 4 8

1 3 1 9 3

1 3 6 2 7

Y is a 3-by-4-by-2 matrix where

Y(:, 1, 1) = Values of 01 at A = 4, B = 5

Y(:, 2, 1) = Values of 02 at A = 4, B = 5

Y(:, 3, 1) = Values of C1 at A = 4, B = 5

Y(:, 4, 1) = Values of C2 at A = 4, B = 5

Y(:, 1, 2) = Values of 01 at A = 1, B = 3

Y(:, 2, 2) = Values of 02 at A = 1, B = 3

6-106

gridEvaluate

Y(:, 3, 2) = Values of C1 at A = 1, B = 3

Y(:, 4, 2) = Values of C2 at A = 1, B = 3

Y = gridEvaluate(optimstore, X, objconname, datasetname, rowind)

evaluates the specified objectives/constraints at the points of
datasetname given by rowind as described above. Y is a length(rowind)
by length(objconname) by npts matrix.

See Also evaluate

6-107

setFreeVariables

Purpose Set the optimal values of the free variables

Syntax OUT = setFreeVariables(optimstore, results)

Description Sets the optimal values of the free variables, as returned by the
optimization, into the optimstore. A method of cgoptimstore.

results is a npts by nfreevar matrix containing the optimal values of
the free variables. nsol is the number of solutions and nfreevar is the
number of free variables.

Note This function must be called at the end of the optimization for
the optimal values to be stored.

See Also getFreeVariables

6-108

setOutputInfo

Purpose Set output information for the optimization

Syntax optimstore = setOutputInfo (optimstore, exitflag, termmsg, output)

Description Sets output information for the optimization in optimstore. A method
of cgoptimstore.

The following information is set:

• exitflag: integer value status flag indicating why the optimization
has terminated. exitflag > 0 implies that the optimization has
terminated successfully.

• termmsg: Message that is displayed at termination of algorithm.
Normally used for error messages.

• output: Structure of algorithm statistics for the optimization.

This method is obsolete. Use cgoptimstore/setExitStatus and
cgoptimstore/setOutput instead.

See Also setExitStatus, setOutput

6-109

evaluateNonlcon

Purpose Evaluate optimization nonlinear constraints

Syntax [varargout] = evaluateNonlcon(optimstore, X, ItemNames)

Description Evaluate optimization nonlinear constraints. A method of
cgoptimstore.

Y = evaluateNonlcon(optimstore, X) evaluates all of the nonlinear
constraints in the optimization at the free variable values X. X must be a
(NPoints-by-NFreeVar) matrix where NPoints is the number of points
to be evaluated and NFreeVar is the number of free variables in the
optimization. Note that the evaluation of Y is scaled onto [-1 1].

Y = evaluateNonlcon(optimstore, X, ItemNames) evaluates the
nonlinear constraints specified in the cell array of strings, ItemNames,
at the free variable values X. The values of the nonlinear constraints are
returned in Y, which is of size (NPoints-by-NItems) where NItems is
the number of nonlinear constraints listed in ItemNames.

[Y, YG] = evaluateNonlcon(optimstore, X, ItemNames) also
evaluates the gradient of the specified constraints in YG (if ItemNames is
not specified, then the gradient of all constraints is returned). YG is of
size NFreeVar-by-NItems-by-NPoints, where NFreeVar is the number
of free variables in the optimization.

See Also evaluateObjective

6-110

evaluateObjective

Purpose Evaluate optimization objectives

Syntax varargout = evaluateObjective(optimstore, X, ItemNames)

Description Evaluate optimization objectives. A method of cgoptimstore.

Y = evaluateObjective(optimstore, X) evaluates all of the
optimization objectives at the free variable values X. X must be a
(NPoints-by-NFreeVar) matrix where NPoints is the number of points
to be evaluated and NFreeVar is the number of free variables in the
optimization. The values of the objectives are returned in Y, which is of
size (NPoints-by-NItems) where NItems is the number of objectives in
the optimization. Note that the evaluation of Y is scaled onto [-1 1].

Y = evaluateObjective(optimstore, X, ItemNames) evaluates
the objectives specified in the cell array of strings, ItemNames, at the
free variable values X. The values of the objectives are returned in Y,
which is of size (NPoints-by-NItems) where NItems is the number
of objectives listed in ItemNames.

[Y, YG] = evaluateObjective(optimstore, X, ItemNames) also
evaluates the gradient of the specified objectives in YG (if ItemNames is
not specified, then the gradient of all objectives is returned). YG is of size
NFreeVar-by-NItems-by-NPoints, where NFreeVar is the number of
free variables in the optimization.

See Also evaluateNonlcon

6-111

getA

Purpose Get the linear inequality constraint matrix.

Syntax A = getA(optimstore)

Description Get the linear inequality constraint matrix. A method of cgoptimstore.

A = getA(optimstore) returns the linear inequality constraint matrix
used in the optimization. A is a (NLINCON-by-NFreeVar) matrix where
NFreeVar is the number of free variables in the optimization and
NLINCON is the number of linear inequality constraints.

See Also getB

6-112

getB

Purpose Get the linear inequality constraint target values.

Syntax B = getB(optimstore)

Description Get the linear inequality constraint target values. A method of
cgoptimstore.

B = getB(optimstore) returns the linear inequality constraint target
values used in the optimization. B is a (NLINCON-by-1) column vector
where NLINCON is the number of linear inequality constraints.

See Also getA

6-113

getFreeVariables

Purpose Get the optimal values of the free variables

Syntax data = getFreeVariables(obj)

Description Get the optimal values of the free variables. A method of cgoptimstore.

Results = getFreeVariables(obj) returns the matrix of optimal
values that has been set for the free variables. Results is a NSOL by
NFREEVAR matrix containing many solutions for the optimal values of
the free variables. NSOL is the number of solutions and NFREEVAR is the
number of free variables.

See Also setFreeVariables

6-114

getInitFreeVal

Purpose Get the initial free values for the optimization

Syntax x0 = getInitFreeVal(cos)

Description Get the initial free values for the optimization. A method of
cgoptimstore.

x0 = getInitFreeVal(optimstore) returns the initial values of the
free variables used in the optimization. X0 is a (1-by-NFreeVar) matrix
where NFreeVar is the number of free variables in the optimization.

See Also setFreeVariablesMode

6-115

getLB

Purpose Get the free variable lower bounds

Syntax LB = getLB(optimstore)

Description Get the free variable lower bounds. A method of cgoptimstore.

LB = getLB(optimstore) returns the free variable lower bounds used
in the optimization. LB is a (1-by-NFreeVar) vector where NFreeVar is
the number of free variables in the optimization.

See Also getUB

6-116

getParam

Purpose Get optimization parameter

Syntax property_value = getParam(obj, propertyname)

Description Get optimization parameter. A method of cgoptimstore.

V = getParam(optimstore, 'Parameter_name') returns the value
of the specified parameter in the optimization. These optimization
parameters must be set up in the ’Options’ section of the user defined
script.

See Also addParameter

See the example file mbcOSworkedexample, used in the optimization
tutorial “Worked Example Optimization”.

6-117

getLcon

Purpose Return the linear constraint labels

Syntax conLabels = getLcon(optimstore)

Description Return the linear constraint labels. A method of cgoptimstore.

conLabels = getLcon(optimstore) returns the labels for the linear
constraints in the optimization. These labels are those found in the
CAGE GUI for the optimization linear constraints.

See Also getObjectives, getNumNonlcon

6-118

getNumNonlcon

Purpose Return the number of nonlinear constraints per label

Syntax ncon = getNumNonlcon(optimstore)
ncon = getNumNonlcon(optimstore, conLabels)

Description Return the number of nonlinear constraints per label. A method of
cgoptimstore.

ncon = getNumNonlcon(optimstore) returns the number of
constraints that will be returned from an evaluation of each labelled
constraint. For example, consider an optimization that has a sum
constraint over a set of points, S, and a point constraint to be evaluated
at each member of S. NCON will return [1 r], where r is the number of
points in S.

ncon = getNumNonlcon(optimstore, conLabels) returns the number
of constraints type for the defined constraints.

See Also getConstraints, getNumNonlconLabels

6-119

getNumNonlconLabels

Purpose Return the number of nonlinear constraint labels

Syntax numlab = getNumNonlconLabels(optimstore)

Description Returns the number of nonlinear constraint labels in the optimization.
A method of cgoptimstore.

See Also getNumObjectiveLabels

6-120

getNumObjectiveLabels

Purpose Return the number of objective labels

Syntax numlab = getNumObjectiveLabels(optimstore)

Description Returns the number of objective labels in the optimization. A method of
cgoptimstore.

See Also getNumNonlconLabels

6-121

getNumObjectives

Purpose Return the number of objectives per label

Syntax nobj = getNumObjectives(optimstore)
nobj = getNumObjectives(optimstore, objlabels)

Description Return the number of objectives per label. A method of cgoptimstore.

nobj = getNumObjectives(optimstore) returns the number of
objectives that will be returned from an evaluation of each objective
label. For example, consider an optimization that has a sum objective
over a set of points, S, and a point objective to be evaluated at each
member of S. nobj will return [1 r], where r is the number of points in S.

nobj = getNumObjectives(optimstore, objlabels) returns the
number of objectives that will be returned for the defined objective
labels.

See Also getObjectives; getObjectiveType

6-122

getObjectives

Purpose Return the objective labels for the optimization

Syntax objLabels = getObjectives(optimstore)

Description A method of cgoptimstore. Returns the labels for the objective
functions in optimization. These labels are those found in the CAGE
GUI for the optimization objectives.

See Also getLcon

6-123

getObjectiveType

Purpose Return the objective type

Syntax objType = getObjectiveType(optimstore)
objType = getObjectiveType(optimstore, objLabels)

Description Return the objective type. A method of cgoptimstore.

objType = getObjectiveType(optimstore) returns the objective type
of all the objectives in the optimization. A 1-by-NOBJ cell array is
returned, each element being ’min’, ’max’ or ’helper’.

objType = getObjectiveType(optimstore, objLabels) returns the
objective type for the defined objectives.

See Also getObjectives

6-124

getOptimOptions

Purpose Retrieve the optimization options object

Syntax options = getOptimOptions(optimstore)

Description A method of cgoptimstore. Returns the optimization configuration
object. Information about the optimization set up can be retrieved from
this object.

6-125

getOutputInfo

Purpose Get output information for the optimization

Syntax [exitflag, msg, stats] = getOutputInfo(cos)

Description Get output information for the optimization. A method of cgoptimstore.

[exitflag, termMsg] = getOutputInfo(optimstore) returns
diagnostic output information from optimstore. exitflag indicates
the success (exitflag > 0) or failure (exitflag <= 0) of the current
optimization run. exitflag may also give some indication why
the optimization terminated. Any termination message set by the
optimization can be retrieved from termMsg.

[exitflag, termMsg, output] = getOutputInfo(optimstore)
returns in addition a structure of algorithm-specific information in
output. For output to be non-empty, the user must create it in their
algorithm. See the worked example and tutorial for more information
on how to create output structures.

6-126

getUB

Purpose Get the free variable upper bounds

Syntax UB = getUB(optimstore)

Description A method of cgoptimstore. Returns the free variable upper bounds
used in the optimization. UB is a (1-by-NFreeVar) vector where
NFreeVar is the number of free variables in the optimization.

See Also getLB

6-127

gridPevEvaluate

Purpose Grid evaluation of prediction error variance (PEV)

Syntax [y, ysums] = gridpevevaluate(optimstore, X)
Y = gridpevevaluate(optimstore, X, objconname)
Y = gridpevevaluate(optimstore, X, objconname, datasetname)
Y = gridpevevaluate(optimstore, X, objconname, datasetname, rowind)

Description Warning The evaluation of PEV is no longer supported in
cgoptimstore and this method will return PEV values of zero
(as detailed below) if called.

A method of cgoptimstore.

Y = gridpevevaluate(optimstore, X) produces identical results to
the equivalent call to cgoptimstore/pevEvaluate

Y = gridpevevaluate(optimstore, X, objconname) returns PEV
values of zero for the objectives/constraints specified in the cell array
objconname.

Y = gridpevevaluate(optimstore, X, objconname, datasetname)
returns PEV values of zero for the specified objectives/constraints. The
return matrix, Y, is of size SIZE(X,1)-by-(NOBJCON)-by-NPTS, where
NOBJCON is the number of specified objectives/constraints and NPTS is
the number of rows in P.

Y = gridpevevaluate(optimstore, X, objconname,
datasetname, rowind) returns PEV values of zero for the specified
objectives/constraints. Y is a LENGTH(ROWIND) by LENGTH(OBJCONNAME)
by NPTS matrix.

See Also pevEvaluate

6-128

getStopState

Purpose Current stop state for optimization

Syntax stop= getStopState(opt)

Description A method of cgoptimstore. stop= getStopState(optimstore)
returns the current stop state for the optimization. The stop state could
be set by the ’Stop’ button on the Running Optimization progress bar
or via a call to setStopState within a script.

See Also setStopState

6-129

isScalarFreeVariables

Purpose Return whether all the free variables are scalars

Syntax stat = isScalarFreeVariables(optimstore)

Description Return whether all the free variables are scalars. A method of
cgoptimstore.

stat = isScalarFreeVariables(optimstore) returns TRUE if all the
free variables are scalars and FALSE otherwise.

6-130

nEvaluate

Purpose Natural evaluation of optimization objectives and constraints

Syntax [y, ysums] = nEvaluate(optimstore, x)
Y = nEvaluate(optimstore, x, itemNames)
Y = nEvaluate(optimstore, x, itemNames, datasetName)
Y = nEvaluate(optimstore, x, itemNames, datasetName, rowind)

Description Natural evaluation of optimization objectives and constraints. A
method of cgoptimstore.

Y = nEvaluate(optimstore, x) evaluates the raw values of all of the
optimization objectives and constraints at the free variable values X.
X is a (NPoints-by-NFreeVar) matrix where NPoints is the number
of points to be evaluated and NFreeVar is the number of free variables
in the optimization.

Y = nEvaluate(optimstore, x, itemNames) evaluates the raw
values of the objectives and constraints specified in the cell array
of strings, itemNames, at the free variable values X. The values of
the objectives and constraints are returned in Y, which is of size
(NPoints-by-NItems) where NItems is the number of objectives and
constraints listed in itemNames.

Y = nEvaluate(optimstore, x, itemNames, datasetName)
evaluates the specified objectives and constraints at the operating
points in the data set specified by the string datasetName.

Y = nEvaluate(optimstore, x, itemNames, datasetName,
rowind) evaluates the specified objectives and constraints at the points
of datasetName given by rowind. X must be a (NRows-by-NFreeVar)
matrix where NRows is the length of rowind. rowind must be a
list of integer indices in the range [1 NumRowsInDataset]. Y is a
(Nrows-by-NItems) matrix.

See Also evaluate

6-131

nEvaluateNonlcon

Purpose Natural evaluation of optimization nonlinear constraints

Syntax y = nEvaluateNonlcon(optimstore, x)
Y = nEvaluateNonlcon(optimstore, x, itemNames)

Description Natural evaluation of optimization nonlinear constraints. A method of
cgoptimstore.

Y = nEvaluateNonlcon(optimstore, x) evaluates all of the
optimization nonlinear constraints at the free variable values X. X must
be a (NPoints-by-NFreeVar) matrix where NPoints is the number of
points to be evaluated and NFreeVar is the number of free variables in
the optimization. The raw values of the constraints are returned in Y,
which is of size (NPoints-by-NItems) where NItems is the number of
nonlinear constraints in the optimization.

Y = nEvaluateNonlcon(optimstore, x, itemNames) evaluates the
nonlinear constraints specified in the cell array of strings, itemNames,
at the free variable values X. The raw values of the constraints are
returned in Y, which is of size (NPoints-by-NItems) where NItems is
the number of nonlinear constraints listed in itemNames.

See Also evaluateObjective; evaluateNonlcon

6-132

nEvaluateObjective

Purpose Natural evaluation of optimization objectives

Syntax y = nEvaluateObjective(optimstore, x)
Y = nEvaluateObjective(optimstore, x, itemNames)

Description Natural evaluation of optimization objectives. A method of
cgoptimstore.

Y = nEvaluateObjective(optimstore, x) evaluates all of the
optimization objectives at the free variable values X. X must be a
(NPoints-by-NFreeVar) matrix where NPoints is the number of
points to be evaluated and NFreeVar is the number of free variables
in the optimization. The raw values of the objectives are returned in
Y, which is of size (NPoints-by-NItems) where NItems is the number
of objectives in the optimization.

Y = nEvaluateObjective(optimstore, x, itemNames) evaluates the
objectives specified in the cell array of strings, itemNames, at the free
variable values X. The raw values of the objectives are returned in Y,
which is of size (NPoints-by-NItems) where NItems is the number
of objectives listed in itemNames.

See Also evaluateObjective; evaluateNonlcon

6-133

optimset

Purpose Create/alter optimization OPTIONS structure

Syntax options = optimset(optimstore)
options = optimset(optimfunction, optimstore)
options = optimset(optimfunction, optimstore)
options = optimset(..., 'param1',value1,...)

Description Create/alter optimization OPTIONS structure. A method of
cgoptimstore.

options = optimset(optimstore) creates an optimization options
structure that can be used with Optimization Toolbox functions.
with the named parameters altered with the specified values. Any
parameters specified in the optimization that match (by name) those in
the default options structure are copied into options.

options = optimset(oldopts, optimstore) creates a copy of
oldopts and copies matching parameters from the optimization into it.

options = optimset(optimfunction, optimstore) creates an
options structure with all the parameter names and default values
relevant to the optimization function named in optimfunction and
then copies matching parameters from the optimization into it.

options = optimset(..., 'param1',value1,...) sets the additional
named parameters to the specified values.

See Also getParam

6-134

pevEvaluate

Purpose Evaluate prediction error variance (PEV)

Syntax Y = pevEvaluate(optimstore, X)

Description Warning The evaluation of PEV is no longer supported in
cgoptimstore and this method will return PEV values of zero
(as detailed below) if called.

A method of cgoptimstore.

Y = pevEvaluate(optimstore, X, itemnames)

returns PEV values of zero for objectives/constraints at the free variable
values X. X is a (NPoints-by-NFreeVar) matrix where NPoints is the
number of points to be evaluated and NFreeVar is the number of free
variables in the optimization.

Y = pevevaluate(optimstore, X, objconname, datasetname)

returns PEV values of zero for the objectives/constraints at the
operating points in the data set specified by the string datasetname.

Y = pevevaluate(optimstore, X, objconname, datasetname, rowind)

returns PEV values of zero for the specified objectives/constraints
at the points of datasetname given by rowind. X must be a
(NRows-by-NFreeVar) matrix where NRows is the length of
rowind. rowind must be a list of integer indices in the range [1
NumRowsInDataset].Y is a (Nrows-by-NItems) matrix.

See Also gridPevEvaluate

6-135

setExitStatus

Purpose Set exit status information for the optimization

Syntax optimstore = setExitStatus(optimstore, exitflag, termmsg)

Description Set exit status information for the optimization. A method of
cgoptimstore.

optimstore = setExitStatus(optimstore, exitflag, termmsg)
sets termination status information in the optimstore. exitflag is an
integer which determines whether the optimization has terminated
successfully. Note that exitflag > 0 indicates success and exitflag
<=0 indicates failure. In any event, a termination message can be
passed back to the optimization through termmsg.

See Also See the example file mbcOSworkedexample, used in the optimization
tutorial “Worked Example Optimization”.

6-136

setOutput

Purpose Set diagnostic information for the optimization

Syntax optimstore = setOutput(optimstore, OUTPUT)

Description Set diagnostic information for the optimization. A method of
cgoptimstore.

optimstore = setOutput(optimstore, OUTPUT) sets diagnostic
information for the optimization in optimstore. Any diagnostic
information is passed to optimstore through the structure, OUTPUT. See
the worked example for an example of creating an OUTPUT structure.

See Also See the example file mbcOSworkedexample, used in the optimization
tutorial “Worked Example Optimization”.

6-137

setStopState

Purpose Set current stop state for optimization

Syntax setStopState(opt,stop)

Description Set current stop state for optimization. A method of cgoptimstore.

stop = setStopState(optimstore,stop) sets the current stop state
(TRUE or FALSE) for the optimization. Note that this command does not
stop an optimization, the optimization script must do this.

See Also getStopState

6-138

7

Data Sets

This section includes the following topics:

Data Sets Views (p. 7-2) How to use the Data Sets views.

Setting Up Data Sets (p. 7-4) How to set up data sets by importing
experimental data, importing data
from tables, specifying factors
manually, and creating a factor from
the error between factors.

Viewing Data in a Table (p. 7-11) How to use the data table view.

Plotting Outputs (p. 7-13) How to use the plot view.

Using Color to Display Information
(p. 7-16)

How to use color plots and restrict the
color to display factor information.

Linking Factors in a Data Set
(p. 7-20)

How to link factors.

Assigning Columns of Data (p. 7-22) How to assign columns of data to
input factors, for example, in order
to compare experimental data with
tables or models.

Manipulating Models in Data Set
View (p. 7-23)

How to change models from input to
output factors.

Filling Tables from Experimental
Data (p. 7-24)

How to fill tables from data,
including creating rules.

7 Data Sets

Data Sets Views

The Data Set view has these main functions:

• Validating calibrations with experimental data

• Filling tables by reference to a set of experimental data

• Constructing operating point sets for running optimizations

• Investigating optimization results and using them to fill tables

For worked examples about data sets, see the Getting Started tutorials.

Data Sets consists of four views. These views display different aspects of
the data set. Each view is accessible from the View menu or by clicking the
appropriate button on the toolbar.

• Factor Information

List of all available project expressions, which can be added to the data set
for display and evaluation.

• View Data

Displays the data in a table. Individual entries can be altered. Columns of
data can be assigned to CAGE expressions.

• Plot Outputs

Displays models and features evaluated at the data points (of the data set).

• Fill Table from Data Set

This mode allows you to fill tables by reference to experimental data.

7-2

Data Sets Views

7-3

7 Data Sets

Setting Up Data Sets
The Data Sets view displays the strategies, tables, and models, etc., as a list
of factors in the default Data Set Factors view. You can also display the
same factors as columns in a grid, with all factors displayed as columns in

the list, by selecting the View Data toolbar button (). The data set works
over a grid of values, which is not necessarily the same as the normalizers of
any included tables in the data set.

You have to set the input factors and their values to define the grid in the data
set. You can do this in one of three ways:

• Import experimental data. (See “Importing Experimental Data” on page
7-4.)

• Import the values from a table in your CAGE session. (See “Importing
Data from a Table in Your Session” on page 7-6.)

• Specify the factors and their values manually. (See “Specifying the Factors
Manually” on page 7-7.)

The next sections describe each of these in detail.

Importing Experimental Data
You can import experimental data to a data set, either to validate a calibration
or to use it as the basis for a calibration.

You can import data that is stored in the following formats:

• Microsoft Excel spreadsheets

• Comma-separated value files

• MAT-files

Importing from Excel or Comma-Separated Value
When you import data from either a Microsoft Excel spreadsheet or from a
comma-separated value file, you must ensure that the data is organized in
the following manner:

7-4

Setting Up Data Sets

• The first column can either be row markers (text) or entries (numbers).

• The first row can either be column headers (text) or entries (numbers).

• All the other row and column entries must be numbers.

Importing from MAT-files
When you import from a MAT-file, you must ensure that the file contains
numbers only, that is, a double array.

To import experimental data,

1 Select File -> Import -> Data.

2 In the file browser, select the correct file to import.

This opens the Data Set Import Wizard.

3 Discard any columns of data you do not want to import by selecting the
column and clicking the button shown.

4 Click Next.

The following screen asks you to associate variables in your project with
data columns in the data.

5 Highlight the variable in the Project Assignments column and the
corresponding data column in the Data Column, then click the assign
button, shown.

6 Repeat step 5 until you are satisfied that you have associated all the
variables and data columns. Any unassigned data columns are treated
as output factors.

7-5

7 Data Sets

7 Click Finish to close the dialog box.

This imports your data into the data set. When you have imported your data,
you can view your data set.

Importing Data from a Table in Your Session
To import data from a table,

1 Select Data -> Import -> Import from Table.

If your data set is not empty, a dialog box asks whether you want to Fill
the data set from the table or Overwrite the data set from the table.
Select Fill to use the table values to fill the factors in your data set. Select

7-6

Setting Up Data Sets

Overwrite to disregard all factors in your data set and fill the data set
with the input and output factors from the table. A dialog box opens.

2 Select the correct table from your session to import and click OK.

When you have imported your data, you are ready to view the data set.

Specifying the Factors Manually

1 Select the Data Set view by clicking the large Data Sets button in the
Data Objects pane.

2 Add a data set to the project by selecting File -> New -> Data Set.

3 Select the factors. (See “Selecting the Factors” on page 7-7.)

4 Build the grid. (See “Manually Setting Values of the Input Variables” on
page 7-9.)

Once you have completed these steps you can view the data set.

This section describes

• “Selecting the Factors” on page 7-7

• “Manually Setting Values of the Input Variables” on page 7-9

Selecting the Factors

Clicking the Factors View button in the toolbar (). This displays two
list boxes.

• The upper list shows all factors within the data set. You can sort factors by
clicking the column headings.

• The lower list shows CAGE project expressions.

7-7

7 Data Sets

You can use this view to add factors to or remove factors from the data set.

To add a factor to a data set,

• Right-click a factor and select Add to Data Set from the context menu.

• Alternatively, select the factor or factors that you want to add to the data
set from the list in the lower Project Expressions pane, then select
Data > Factors > Add to Data Set.

To make multiple selections, use the standard Shift+click or Ctrl+click.

To remove a factor from a data set,

1 Select the factor or factors that you want to remove from the data set.

7-8

Setting Up Data Sets

2 Right-click and select Remove from Data Set, or select the menu item
Data -> Factors -> Remove From Data Set.

Note Links between the two lists are always preserved, so clicking load in
the upper list also selects load in the lower list. In other words, you can
copy or remove from either list and the relevant results appear in both.

Manually Setting Values of the Input Variables

Clicking the Build Grid toolbar button () or selecting Data -> Build Grid
enables you to set the values of the input variables for the data set.

To build a full factorial grid,

1 Select Data -> Build Grid.

2 Select the factor that you want to define a grid for.

3 Set the grid for the factor.

To set a grid of 5, 10, 15, 20, 25, 30, input the following: 5:5:30, where
the first number is the minimum, the second is the step size, and the last
number is the maximum value.

4 Check the size of the data set in the pane. The current size reported at the
bottom of the dialog is the size if you click Cancel to leave the data set
unchanged. The projected size is created if you click OK. In the following
example, the projected size of 45 you can see is obtained by multiplying the
number of points for each factor with a grid (in this case, 3 * 5 * 3).

5 Select the next factor that you want to define a grid for.

6 When you have set the grids for all the factors, click OK.

7-9

7 Data Sets

Creating a Factor from the Error Between Factors
To create a factor that is the difference between two other factors,

1 Highlight the two factors, using Ctrl+click or Shift+click.

2 Select Create Error from the right-click menu on either column head.

This creates a new factor that is the difference between the two other factors.

7-10

Viewing Data in a Table

Viewing Data in a Table

Click the View Data button () in the toolbar or select View -> Data to
display the data in tabular form and a list of the current items in the project.

Note that this view is only enabled if you have a grid of points at which to
evaluate and display the models and variables. This grid is not necessarily
derived from the normalizers of any tables included in the data set. You can
set the grid by importing experimental or table data, or by using the Build

Grid toolbar button (). See “Setting Up Data Sets” on page 7-4.

Columns are color coded by factor type:

• Input factors are white.

• Output factors are gray.

7-11

7 Data Sets

Selecting an output column highlights the input columns associated with it
by turning the header cells cream.

Standard editing facilities are available. Double-click an input cell to edit
the value.

Cut and paste using the desktop clipboard. Cells, columns, and rows can be
copied directly to and from other applications (for example, Excel).

Note You can only edit input values, not output values.

7-12

Plotting Outputs

Plotting Outputs
Use this to plot the outputs of your data sets.

To view a plot,

1 Select View > Plot or click the toolbar button.

2 Select an expression from the list to view.

A plot of the selected output factor appears in the top pane.

3 Use the pop-up menus below the plot to change the factors displayed.

7-13

7 Data Sets

To zoom in on an area of interest,

• Press both mouse buttons simultaneously and drag a rectangle; double-click
the graph to return to full size.

Plotting Multiple Selections
You can plot a multiple selection by using standard Ctrl+click and
Shift+click operations.

A legend at the top of the screen displays the key to the graph.

When exactly two items are displayed, further plot options are available:

7-14

Plotting Outputs

• Plot the first item against the second item (X-Y Selection).

• Display the error using one of the following options:

- Error

- Absolute error

- Relative error (%)

- Absolute relative error (%)

7-15

7 Data Sets

Using Color to Display Information
You can use the plot view to display more information by coloring the plots.

1 Select View > Plot or click .

2 Highlight the correct expression in the Output Expressions (Project
and Data Set) pane.

3 Select Color by Value from the right-click menu of the plot.

4 Select from the pop-up menu the variable you want to use to color the plot.

7-16

Using Color to Display Information

In the following figure, you can see

• A plot of the Sum vs Data Set Point (this is the strategy from a torque
feature calibration).

7-17

7 Data Sets

• The points are colored by load.

• For this example it can be seen that, in general, the higher the load, the
higher the value of torque.

Restricting the Color
You might be interested in only part of the display; for example, you might
only be interested in points with a low engine speed. The various display
options enable you to color only the points that you are interested in.

To restrict the color,

1 Select the Limit range box, or right-click the plot and select Limit Color
Range.

Three limit markers appear in the color bar. The colors in the color bar are
compressed within the limit markers. This increases the range of colors
over the range you are interested in (between the limits), making it easier
to see the distribution of points.

2 Adjust the maximum, midpoint, and minimum of the range by dragging
the limit markers on the color bar.

7-18

Using Color to Display Information

3 Examine the data points and those that are outside the range.

Use the right-click menu to alter the view of the points outside the range:

• Select Exclude to remove all points outside the limits from the display.

• Select Color Outside Limits to display all points in color, including those
outside the limits. Points outside the limits are still colored, but only dark
red or dark blue, depending on which end of the range they are.

• Select No Color Outside Limits to display the points as in the example
shown. Points outside the limits are plotted as empty circles.

7-19

7 Data Sets

Linking Factors in a Data Set
A factor can be linked to another. The factor then takes on the values of that
other factor, overwriting the original values.

For example, you might want to link a variable spark with a model for
maximum brake torque (MBT) to evaluate a torque model.

To link two factors,

1 Select Data -> Links. This opens a dialog box.

2 Select the data set factor that you want to overwrite.

CAGE generates a list of factors that you could possibly link to the selected
factor. (For example, you cannot link to a factor that depends on the
selected factor.)

3 Select the factor that you want to link the selected factor with.

4 Click to link the two factors.

7-20

Linking Factors in a Data Set

CAGE then overwrites the data set factor with the link.

To break a link and return to normal evaluation, click .

Once all the links have been created or broken as you want, click OK to exit
the dialog.

See also:

• “Setting Up Data Sets” on page 7-4

7-21

7 Data Sets

Assigning Columns of Data
To analyze imported data, you need to assign columns of data to input factors
in the CAGE data set.

Data can be imported into a data set from outside CAGE, for example, from
an engine test cell. In many cases, this data contains a set of input points (or
operating points) and the values of important measurable variables at those
points. To compare data like this with models (and/or tables) in a CAGE
data set, you have to assign columns of the data to the corresponding input
factors in the data set.

To assign data,

1 Select Data > Assign.

2 In the dialog box, highlight the column that you want to assign and the
variable that you want to assign it to.

3 Click to assign.

To unassign data,

1 Select Data > Assign.

2 In the dialog box, highlight the variable that you want to unassign.

3 Click to unassign.

Note Assigning data to a CAGE expression overwrites that expression in
the data set. This does not affect the expression in the other parts of the
CAGE project.

7-22

Manipulating Models in Data Set View

Manipulating Models in Data Set View
A model in a data set can be treated as either an input or an output. This is
particularly useful when a model is used as an input to another model and you
want to view specific values of the input model. For example, linking a model
of MBT Spark to a Spark model allows the evaluation of a TQ model at MBT.

To change a model to an input,

1 Highlight the desired model in either the factor view or the table view.

2 Select Treat as Input from the right-click menu.

To revert a model to an output,

1 Highlight the desired model in either the factor view or the table view.

2 Select Treat as Output from the right-click menu.

7-23

7 Data Sets

Filling Tables from Experimental Data
Any table in the project whose axes (normalizers) exist as factors in the data
set can be filled from imported experimental data (or any data set, such as
optimization output).

CAGE extrapolates the values of the experimental data over the range of
your table. Then it fills the table by selecting the values of the extrapolation
at your breakpoints.

To fill the table with values based on the experimental data,

1 To view the Table Filler display, click (Fill Table From Data Set) in the
toolbar; or select View > Table Filler.

You can use this display to specify the table you want to fill and the factor
you want to use to fill it.

2 In the lower pane, select the table from the Table to fill list. This is the
table that you want to fill.

3 Select the experimental data from the Factor to fill table list. This is the
data that you want to use to fill the table.

For example, see the following display.

7-24

Filling Tables from Experimental Data

The upper pane displays the breakpoints of your table as crosses and the
operating points where there is data as blue dots. Data sets display the
points in the experimental data, not the values at the breakpoints. You can
inspect the spread of the data compared to the breakpoints of your table
before you fill the table.

4 To view the table after it is filled, make sure the Show table history after
fill box at the bottom left is selected. This is selected by default.

5 To fill the table, click Fill Table.

7-25

7 Data Sets

If the Show table history after fill box is selected, the History dialog
box opens, similar to the one shown.

6 Click Close to close the History dialog box and return you to the Table
Filler display.

7 To view the graph of your table, select Data > Plot > Surface.

7-26

Filling Tables from Experimental Data

This display shows the table filled with the experimental points overlaid as
purple dots.

Creating Rules
You can ignore points in the data set when you fill your lookup table.

By defining a region to include or exclude such points, you create a rule for
the table filling.

For example, you might want to fill a lookup table that has a range of
operating points that is smaller than the range of the experimental data.

To ignore points in the data set,

1 Select Data > Plot > Data Set. This displays the view of where the
breakpoints lie in relation to the experimental data.

2 To define the region that you want to include, left-click and drag the plot.
For example, see the following display.

This region defines a rule in the Table filling rules pane.

7-27

7 Data Sets

3 To fill the table based on an extrapolation over these data points only, click
Fill Table.

The display of the surface now shows the table filled only by reference to the
data points that are included in the range of the table.

You can now review your data set using the options in the View and Plot
panes of Data Sets.

You can add any number of rules to follow when filling tables. For example,
you might be aware that a particular test run included in the chosen area
is not good data. You can click and drag to enclose any chosen point, then
right-click that rule (in the Table filling rules pane) and select Exclude
Points. You can set any number of rules to make sure you fill the table by
using just the points you are interested in.

Right-Click Options
Select Data -> Table Fill to reach the following options:

• Enable Rule: Apply the rule to the data.

• Disable Rule: Do not apply the rule, but also do not delete it.

• Exclude Points: Do not include these points in table filling.

• Include Points: Include points in table filling.

7-28

Filling Tables from Experimental Data

• Promote Rule: Change order of rules.

• Demote Rule: Change order of rules.

• Clear Rule: Delete this rule.

You can use these options to enable an iterative process. You can fine-tune
the selection of data points: try different selections of data to fill your tables,
check the results, then reuse the same rules for the same or different tables.

7-29

7 Data Sets

7-30

8

Surface Viewer

This section includes the following topics:

The Surface Viewer in CAGE (p. 8-2) Introduction to the Surface Viewer.

Viewing a Model or Strategy (p. 8-3) How to view models or strategies.

Setting Variable Ranges (p. 8-5) How to set ranges for display.

Displaying the Model or Feature
(p. 8-7)

This section describes the display
options available: surface, contour,
single line, single value, multiline,
movie, or table.

Making Movies (p. 8-14)

Displaying Errors (p. 8-16) How to display errors: predicted
error of the model and the error
between a model and a strategy
(feature error).

Printing and Exporting the Display
(p. 8-18)

How to print and export displays.

8 Surface Viewer

The Surface Viewer in CAGE
The Surface Viewer enables you to view the model or the feature as it varies
over the ranges of its variables. You can automatically step through values of
a variable, to make a movie of the behavior of the feature or model. You can
view the model or feature using a variety of plot types.

Note The Surface Viewer is only available when you are viewing models,
tradeoffs or the feature node of a feature calibration.

Following is an example of the Surface Viewer displays.

8-2

Viewing a Model or Strategy

Viewing a Model or Strategy

To access the surface viewer, select Tools > Surface Viewer or click on
the toolbar.

These are the main steps to view the model or feature using the Surface
Viewer dialog box:

1 The model or feature selected when you open the Surface Viewer is
displayed in the plot. If you have more than one model or feature, select
what to display from the top Items list.

You can multiselect up to 4 items at once using Ctrl+click (the plot view
on the right divides into a maximum of 4 plots). All the settings below the
Items list apply to all plots. If one of the features selected in the Items
list does not contain the appropriate input variables you select to plot,
there will be no plot for that item.

2 Select the ranges for the variables. (See “Setting Variable Ranges” on page
8-5.)

3 Choose the plot type to display. (See “Displaying the Model or Feature” on
page 8-7.). You can view surfaces, contour plots, single and multilines,
movies, tables, and single values.

For example, as you view a feature, you can view either the strategy, the
model associated with that feature, the error between the model and the
strategy, or the prediction error if the model was imported from the Model
Browser. You can also use one of these factors to shade the surface formed
by one of the other factors, and you can select any two factors to display
simultaneously as two surfaces.

• You can make a movie. (See “Making Movies” on page 8-14). This enables
you to view the model or feature as it steps through several values of
a variable. For example, if you want to view a feature calibrated for
maximum brake torque (MBT) as it varies over exhaust gas recycling
(EGR), you can make a movie of the feature.

• You can also print or export the display. (See “Printing and Exporting the
Display” on page 8-18.)

8-3

8 Surface Viewer

8-4

Setting Variable Ranges

Setting Variable Ranges
The Surface Viewer does not work over continuous ranges, only at discrete
points. You must specify, for the model or feature, the discrete points you
want to include in the display. You can display models or features over a
range of points. To edit the displayed values of a variable, double-click in the
value box for the appropriate variable.

• Variables not being used for the axes plotted have a single value for that
plot; to edit the displayed value for these variables you can type directly
into the edit box after double-clicking.

• For variables specified by the axes drop-down menus, the value box
displays the range over which that variable is plotted and the number of
points plotted across that range. To edit both the range and the number of
points, double-click the value box. The Value Editor opens.

Here you can indicate the points to include in the display. You can specify

• The minimum and maximum values and the number of points across that
range by choosing Uniform Vector and typing in the edit boxes Min,
Max, and Number of points.

• Each discrete point at which you want to evaluate the model (or feature),
by choosing Freeform vector, and then typing the required values.

For example, if you want to display the variable x at 0, 1, 7, 30, and 50,
enter the following in the Freeform vector edit box, separated by tabs or
spaces:

0 1 7 30 50

Click OK to apply your changes to the plot.

8-5

8 Surface Viewer

When you alter the variables, you can select whether you want the display
to update automatically or not. You can toggle the automatic update on
and off by selecting Tools > Auto-Evaluate. When you want to update the
display, select Tools > Evaluate Now . Both of these options have equivalent
toolbar buttons:

8-6

Displaying the Model or Feature

Displaying the Model or Feature
The Plot Type drop-down menu gives the options on how to display the model
or feature, as shown below.

Use the options in this menu to display the model or feature in the following
ways:

• “Surface” on page 8-8

• “Contour” on page 8-10

• “Line” on page 8-11

• “Single Value” on page 8-11

• “Multiline” on page 8-12

• “Table” on page 8-12

• Movie. See “Making Movies” on page 8-14.

When plotting multiple models or features, it can be useful to link axes
rotation or use common Y- or Z- ranges. Use the display options (toolbar
button or View menu).

In any of these views you can select View > Statistics, or click the equivalent
toolbar button. This opens a dialog box with a list of the summary statistics
(mean, standard deviation, maximum, or minimum) of your currently selected
model, strategy, or error for the current display.

For the plots (not movie, single value or tables) you can use the File menu or
toolbar to print, copy to clipboard or print to figure. You can also export plot
values to CSV file. See “Printing and Exporting the Display” on page 8-18.

8-7

8 Surface Viewer

You can alter display options for all plots (not value or tables) with the View
menu or toolbar button.

Surface

You can rotate the surface plots by left-clicking and dragging.

If you are using the surface viewer to view a feature, you can choose the
following options to display:

• Model

• Strategy

• Prediction Error

• Error (between the model and the strategy)

8-8

Displaying the Model or Feature

When viewing models there are no strategy options. You can choose these
options from the drop-down menus for Surface 1 Height, Surface 1
Shading, and Surface 2 Height, as illustrated below.

You can view any of these options alone as a primary surface (by leaving
the last two options set to None). You can add a second option to shade
the primary surface, for example to color your model surface with the error
between the model and the strategy, to highlight problem areas.

When you choose to shade a primary surface, a color bar appears to the right
of the plot to show you the scale. You can change the maximum and minimum
values of the shading factor by typing in the edit boxes above and below the
color bar. You can see an example like this in “Viewing a Model or Strategy”
on page 8-3.

You can add a second surface to display any two of the options simultaneously,
for example, your model and your strategy.

If you have a boundary model, you can display the boundary by selecting
the check box.

Select the Inputs to plot from the X-axis and Y-axis drop-down lists, and
specify the ranges of inputs in Value controls. See “Setting Variable Ranges”
on page 8-5.

Note For information on the two different error displays available using the
surface view, see the next section, “Displaying Errors” on page 8-16.

8-9

8 Surface Viewer

Contour

You can specify where you want contours by clicking Set Contour Values.
Use the check box to return to automatic contour value selection. You can also
control number of contours, filling and labels in the display options (toolbar
or View menu).

You can enable Cursor Mode (use the View menu or toolbar button) and
then click on the plot lines to display the values at a point (plotted with an X).
The values are shown in the status bar.

8-10

Displaying the Model or Feature

Line

A line plot - you can display up to three different lines (strategy, model,
prediction error and error between the model and strategy). Use the Line
drop-down lists to select what to plot. You can select the check box to clip to a
boundary if available.

You can enable Cursor Mode (use the View menu or toolbar button) and
then click on the plot lines to display the values at a point (plotted with an X).
The values are shown in the status bar.

Single Value
This displays the value of the model, strategy, prediction error or error at the
point you have specified in the variable value boxes.

8-11

8 Surface Viewer

Multiline

Select the variables to plot from the X-axis and Line colors drop-down
menus. Control the number of lines by altering the Values. You can use the
check box to clip to a boundary if available.

You can enable Cursor Mode (use the View menu or toolbar button) and
then click on the plot lines to display the values at a point (plotted with an X).
The values are shown in the status bar.

Table

8-12

Displaying the Model or Feature

You can select a 2-D or 1-D table to display. Select the check box to mark
cells outside the boundary.

Choose variables to be the axes of your table and set the range and number
of points in the same way as for all the plots. Set single values for any other
variables. For more information, see “Setting Variable Ranges” on page 8-5.

For 2–D tables you can use the Cell values drop-down menu to select
whether to display the model output or the prediction error.

For 1-D tables you can select what to display in columns 1, 2 and 3: Model,
Prediction error, Strategy or Error (strategy model) (for features),
or choose None for 2 and 3 to display only a single column. When viewing
models there are no strategy options.

8-13

8 Surface Viewer

Making Movies
How to make a movie that allows you to see an evaluation over two variables at
successive values of a third variable.

Choose Movie from the Plot Type drop-down menu in the Data to Plot pane.

The movie option allows you to see an evaluation over two variables at
successive values of a third variable. For example, a model of torque might
have speed (N), load (L), and air/fuel ratio (A) as inputs.

The movie option allows you to view how the torque model behaves over the
ranges of speed and load for successive values of air/fuel ratio.

1 Select three variables from the X-axis, Y-axis, and Time drop-down
menus, to indicate which variable you want to display. You can view the
model surface plotted across the range of two variables, and define the
third variable as "time" to see the model surface change across the third
variable’s range.

8-14

Making Movies

2 Define the variable ranges using the Value boxes for the inputs. See
“Setting Variable Ranges” on page 8-5.

3 Select the check box to mark boundaries if available.

4 Click Play.

5 You can click the buttons at each end of the progress bar under the plot to
step through the movie, or click anywhere along the bar (or click and drag
the blue pointer) to display a particular point in the movie. You can rotate
the plot (including during play).

8-15

8 Surface Viewer

Displaying Errors
There are two different error displays available in the surface display options
for primary and secondary surfaces and surface shading:

• Error between the model and the strategy (See “Feature Error Data” on
page 8-16 following.)

• Prediction error of the model (See “Prediction Error Data” on page 8-16.)

Feature Error Data
When you are viewing a feature, this displays the error between the strategy
and the model.

To display the error, select Error (strategy-model) from the drop-down
menu for primary or secondary surface. You can also choose to shade your
primary surface with the error by using the Surface 1 Shading menu.

To view the error statistics, select View > Statistics. This opens a dialog box
with a list of the summary statistics for the error between model or feature.

Prediction Error Data
If the model is imported from the Model Browser, it is possible to display the
prediction error (PE) data.

Prediction Error Variance (PEV) is a very useful way to investigate the
predictive capability of your model. It gives a measure of the precision of a
model’s predictions. PEV can also be examined in the Model Browser, both in
the Prediction Error Variance Viewer and to shade surfaces in the Model
Selection and Model Evaluation views. Here you can examine the PEV
of designs and models. When you export the model to CAGE you can see
this data in the Surface Viewer in the Prediction Error option. See the
Model Browser GUI Reference and Technical Documents for details about
the calculation of Prediction Error.

Viewing the Prediction Error
Select Prediction Error from the drop-down display menus for primary or
secondary surfaces. You can also choose Prediction Error to shade your

8-16

Displaying Errors

primary surface. As with all other plots, you can view the statistics for the
Prediction Error displayed by selecting View > Statistics. The mean,
standard deviation, and so on are calculated over the range specified in the
variable value boxes.

8-17

8 Surface Viewer

Printing and Exporting the Display
To print the display, select File -> Print, or you can select Print to Figure.
Selecting File > Copy to Clipboard copies the plot image to the clipboard.
This is useful if you want to place plot images into other applications. These
print options also have equivalent toolbar buttons.

You can also export the display data to a comma-separated variable file.

To export the display, select File > Export to CSV. The currently selected
option is exported. The primary input to the first plot is exported (this is
the top left if you have multiple plots). The output is the values at the grid
of points specified by the current ranges and input values. The inputs for
shading and secondary surfaces are not exported.

Note that you cannot print table plots, but you can click and drag to select
cells and press Ctrl-C to copy the values to the clipboard, or you can export
them to CSV files and then load them into Excel.

8-18

Index

IndexA
aliases 2-9

B
breakpoints

deleting 3-34
filling 4-13
initializing 4-13
locking 3-34
optimizing 4-17

C
CAGE import tool 2-24
calibration manager 3-20
calibrations

importing 3-46
constants

adding 2-7
editing 2-8

D
data sets

importing data from a table 7-6
importing experimental data 7-4
plotting multiple outputs 7-14
plotting outputs 7-13
setting up manually 7-9
viewing as tables 7-11

E
error

displaying for normalizers 4-22
displaying for tables 4-29
displaying in the surface viewer 8-16

extrapolation mask
generating automatically 4-31
using 3-11 4-30

F
factors

assigning to data 7-22
creating error between two factors 7-10
linking 7-20

features
calibrating 4-2 4-32
exporting 3-46
filling 4-32
initializing 4-32
optimizing 4-32
setting up 4-5

formulas
adding 2-7
editing 2-8

H
History display

using 3-16

L
lookup tables

calibrating in a feature calibration 4-24
filling by extrapolation 3-11 4-30
filling using a model 4-26
initializing 4-25
inverting 3-39

M
models

adding 2-15
assigning to features 4-6
displaying curvature 3-37
displaying in tradeoff calibrations 5-8
displaying multiple slices 3-37
editing 2-17
editing connections 2-18

Index-1

Index

importing 2-13
setting up 2-11

N
normalizers

calibrating 4-12
comparison between model and

feature 4-21
copying breakpoint values 3-23
exporting 3-46
filling 4-13
initializing 4-13
optimizing 4-17

O
optimization

constraints 6-15
output view 6-30
setup 6-4
toolbar 6-23
user-defined 6-50
view 6-2

P
precision

changing the precision of a table 3-24
fixed point, lookup table 3-28
fixed point, polynomial ratio 3-26
floating point 3-25

predicted error
displaying in the surface viewer 8-16

R
ReduceError fill method 4-15

S
set points 2-6
ShareAveCurv fill method 4-16
ShareCurvThenAve fill method 4-16
strategies

constructing 4-8
exporting 4-10
importing 4-7
setting up 4-6

surface viewer
editing ranges of variables 8-5
movie controllers 8-14

T
tables

adding to a tradeoff 5-6
calibrating in a feature calibration 4-24
calibrating in a tradeoff calibration 5-10
comparing to a feature 4-28
copying cell values 3-23
exporting 3-46
filling by extrapolation 3-11 4-30
filling using a model 4-26
graph of table 3-10
initializing 4-25
inverting 3-39
locking cell values 3-9
optimizing 4-26
setting up 3-20

tradeoffs
adding 5-5
automatic 6-46
calibrating 5-2
exporting 3-46
setting up 5-5

V
variable dictionaries

Index-2

Index

exporting 2-5
importing 2-5

variable items
adding 2-6

variables

adding 2-6
alias 2-9
editing 2-8

version control
comparing versions 3-18

Index-3

	toc
	Getting Started
	What Is CAGE?
	Starting the CAGE Browser

	Navigating CAGE
	CAGE Views and Processes

	How to Use This Manual

	Variables and Models
	Setting Up Variable Items
	Importing and Exporting a Variable Dictionary
	Importing a Variable Dictionary
	Exporting a Variable Dictionary
	See Also

	Adding and Editing Variable Items
	Adding a Variable
	Adding a Constant
	Adding Formulas
	See Also
	Using the Variable Menu

	Using Aliases
	Why Use Aliases?
	Creating an Alias
	See Also

	Setting Up Models
	Importing Models
	Import Models From Project
	Import Exported Models File
	See Also

	Adding New Function Models
	See Also

	Renaming and Editing Models
	Renaming Models
	Editing Model Inputs

	Model Properties
	Model Properties: General
	Model Properties: Inputs
	Model Properties: Model
	Model Properties: Information

	CAGE Import Tool
	Specifying Locations of Files

	Tables
	Setting Up Tables
	Adding, Duplicating and Deleting Tables
	Adding Tables
	Duplicating Tables
	Deleting Tables

	Table View
	Viewing and Editing a Table
	Locking and Unlocking Cell Values

	Using the Graph of the Table
	Filling a Table by Extrapolation
	Using the Extrapolation Mask

	Table Menu
	Adjust Cell Values

	Using the History Display
	Resetting to Previous Versions
	Adding and Editing Comments About Versions

	Comparing Versions

	Calibration Manager
	Setting Up Tables Manually
	Setting Up Tables Using an Existing Calibration File
	Copying Table Data from Other Sources

	Table Properties
	Floating-Point Precision
	See Also

	Polynomial Ratio, Fixed Point
	Lookup Table, Fixed Point

	About Normalizers
	Normalizer View
	Editing Breakpoints
	Locking and Unlocking Breakpoints
	Deleting Breakpoints

	Input/Output Display
	Normalizer Display
	Breakpoint Spacing Display
	Show the Model's Curvature
	Multiple Slice View

	Inverting a Table
	Inverting One-Dimensional Tables
	Inverting Two-Dimensional Tables

	Importing and Exporting Calibrations
	Importing Calibrations
	Exporting Calibrations

	Feature Calibrations
	Performing Feature Calibrations
	Setting Up a Feature Calibration
	Adding a Feature
	Assigning a Model
	Setting Up Your Strategy
	Importing a Strategy
	Constructing a Strategy
	Exporting Strategies

	Calibrating the Normalizers
	Initializing Breakpoints
	Filling Breakpoints
	Filling Methods
	ReduceError
	ShareAveCurv and ShareCurvThenAve

	Optimizing Breakpoints
	See Also

	Viewing the Normalizer Comparison Pane
	Error Display
	See Also

	Calibrating the Tables
	Initializing Table Values
	Filling Table Values
	Optimizing Table Values

	Comparing the Strategy and the Model
	Error Display

	Filling the Table by Extrapolation
	Using the Extrapolation Mask
	Creating a Mask from the Boundary Model or Predicted Error

	Calibrating the Feature Node
	Initializing the Feature
	Feature Fill Wizard

	Feature View
	Feature Menu

	Tradeoff Calibrations
	Performing a Tradeoff Calibration
	Setting Up a Tradeoff Calibration
	Adding a Tradeoff
	Adding Tables to a Tradeoff
	Adding Existing Tables

	Displaying Models in Tradeoff
	Removing a Model

	Calibrating Tables in a Tradeoff Calibration
	Setting Values of Other Variables
	Setting Values for Individual Operating Points
	Setting Values for All Operating Points

	Determining a Value at a Specific Operating Point
	Right-Click Menu
	Using Zoom Controls on the Graphs

	Tradeoff Table Menus
	View Menu
	Tables Menu
	Inputs Menu
	Tools Menu

	Using Regions
	Defining a Region
	Clearing a Region

	Multimodel Tradeoffs
	Adding a Multimodel Tradeoff
	Calibrating Using a Multimodel Tradeoff

	Automated Tradeoff

	Optimization
	Using the Optimization View
	Setting Up Optimizations
	Optimization Wizard
	Optimization Wizard Step 2
	Optimization Wizard Step 3
	Optimization Wizard Step 4
	Optimization Wizard Step 5
	Optimization Wizard Step 6

	Objectives and Constraints
	Objective Editor
	Point Objectives
	Sum Objectives

	Constraint Editor
	Model
	Sum Constraint

	Defining Variable Values
	Using Variable Values Length Controls
	Running Optimizations
	Optimization View Toolbar
	Optimization Parameters Dialog
	foptcon Optimization Parameters
	NBI Optimization Parameters
	Background on the NBI (Normal Boundary Intersection Algorithm)
	NBI Options

	Optimization Output View
	Solution Slice
	Pareto Slice
	Weighted Objective Pareto Slice
	Selected Solution Slice
	Objective Slice Graphs
	Pareto Front Graphs
	Constraint Slice Graphs
	Constraint Summary Table
	Filling Tables From Optimization Results
	Custom Fill Function Structure
	Custom Fill Function for 1–D Tables

	Automated Tradeoff
	Using Automated Tradeoff
	What Are Appropriate Optimizations?
	Multimodel Tradeoff

	User-Defined Optimization
	Implementing Your Optimization Algorithm in CAGE
	Optimization Function Structure

	About the Worked Example Optimization Algorithm
	The Structure of the Worked Example

	Checking User-Defined Optimizations into CAGE

	Optimization Function Reference
	Methods of cgoptimoptions
	Methods of cgoptimstore

	Functions — Alphabetical List

	Data Sets
	Data Sets Views
	Setting Up Data Sets
	Importing Experimental Data
	Importing from Excel or Comma-Separated Value
	Importing from MAT-files

	Importing Data from a Table in Your Session
	Specifying the Factors Manually
	Selecting the Factors
	Manually Setting Values of the Input Variables

	Creating a Factor from the Error Between Factors

	Viewing Data in a Table
	Plotting Outputs
	Plotting Multiple Selections

	Using Color to Display Information
	Restricting the Color

	Linking Factors in a Data Set
	Assigning Columns of Data
	Manipulating Models in Data Set View
	Filling Tables from Experimental Data
	Creating Rules
	Right-Click Options

	Surface Viewer
	The Surface Viewer in CAGE
	Viewing a Model or Strategy
	Setting Variable Ranges
	Displaying the Model or Feature
	Surface
	Contour
	Line
	Single Value
	Multiline
	Table

	Making Movies
	Displaying Errors
	Feature Error Data
	Prediction Error Data
	Viewing the Prediction Error

	Printing and Exporting the Display

	Index

